Skip to main content
Log in

PLA Based Biopolymer Reinforced with Natural Fibre: A Review

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In recent years renewed interest on the development of biopolymers, based on constituents obtained from natural resources is gaining much attention. Natural fibres such as kenaf, hemp, flax, jute, bamboo, elephant grass and sisal based polymer with thermoplastic and thermoset matrices offer reductions in weight, cost and carbon dioxide emission, less reliance on foreign oil resources and recyclability. Reinforced biopolymer with natural fibres is the future of “green composites” addressing many sustainability issues. Among the available biopolymer, PLA (polylactide) is the only natural resource polymer produced at a large scale of over 140,000 tonnes per year. Natural fibre reinforced PLA based biocomposites are widely investigated by the polymer scientists in the last decade to compete with non renewable petroleum based products. The type of fibre used plays an important role in fibre/matrix adhesion and thereby affects the mechanical performance of the biocomposites. The aim of this review is to investigate the effects of processing methods, fibre length, fibre orientation, fibre-volume fraction, and fibre-surface treatment on the fibre/matrix adhesion and mechanical properties of natural-fibre-reinforced PLA composites. Although much work has been performed to engineer the design of such superior biocomposites, the information is scattered in nature. A comprehensive review on the major technical considerations undertaken to prepare such biocomposites over the last decade is investigated to address the feasibility of wide scale industrial acceptance to such biocomposites. A brief review on the available natural fibres and biopolymer is also given for a comparative study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

BRAF:

Bleached red algae fibre

PLA:

Polylactide/polylactic acid

PLLA:

Poly-l-lactide

PDLA:

Poly-d-lactide

sc-PLA:

Stereocomplex PLA

PHA:

Polyhroxyalkanoates

PHB:

Poly-β-hydroxybutyrate

PHBV:

Poly-β-hydroxybutyrate-co-valerate

CA:

Cellulose acetate

CAP:

Cellulose acetate propionate

CAB:

Cellulose acetate butyrate

WPC:

Wood plastic composite

References

  1. Barbosa V, Ramires EC, Razera IAT, Frollini E (2010) Indust Crops Prod 32:305

    Article  CAS  Google Scholar 

  2. Bledzki AK, Jaszkiewicz A (2010) Comp Sci Technol 70:1687

    Article  CAS  Google Scholar 

  3. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Compos Part A 40:404

    Article  Google Scholar 

  4. Brahmakumar M, Pavithran C, Pillai RM (2005) Compos Sci Tech 65:563

    Article  CAS  Google Scholar 

  5. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2010) J Appl Polym Sci 119:3

    Google Scholar 

  6. Krishnaprasad R, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) J Polym Environ 17:109

    Article  CAS  Google Scholar 

  7. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19

    Article  CAS  Google Scholar 

  8. Summersclales J, Dissanayake NPJ, Virk AS, Hall W (2010) Part 1-Compos Part A 41:1329

    Google Scholar 

  9. Summerscales J, Dissanayake N, Virk A, Hall W (2010) Part 2-Compos Part A 41:1336

    Google Scholar 

  10. Holbery J, Houston D (2006) J Miner Metal Mater Soc 58:80

    CAS  Google Scholar 

  11. Hapuarachchi TD, Ren G, Fan M, Hogg PJ, Pejis T (2007) App Compos Mater 14:251

    Article  CAS  Google Scholar 

  12. ScheibelT (2004) http://www.microbialcellfactories.com/content/3/1/14

  13. Blicblau AS, Coutta RSP, Sims A (1997) J Mater Sci Letter 16:1417

    Article  CAS  Google Scholar 

  14. Sim KJ, Han SO, Seo YB (2010) Macromol Res 18:5

    Article  Google Scholar 

  15. Mohanty AK, Misra M, Drzal LT, Selke SE, Hinrichsen G (2000) Macromol Mater Eng 276:1

    Article  Google Scholar 

  16. Shen L, Worrell E, Patel M (2009) Biofuels Bioprod Bioref 4:25

    Article  Google Scholar 

  17. Smith PM, Wolcott MP (2006) Forest Prod J 56:4

    Google Scholar 

  18. Singh S, Mohanty AK (2007) Compos Sci Technol 67:1753

    Article  CAS  Google Scholar 

  19. Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Krause C, Wolcott M (2008) J Appl Polym Sci 110:1085

    Article  CAS  Google Scholar 

  20. Pervaiz M, Sain MM (2003) Conserv Recycl 39:325

    Article  Google Scholar 

  21. Pervaiz M, Sain MM (2003) Macromol Mater Eng 288:553

    Article  CAS  Google Scholar 

  22. Oujai S, Hodzic A, Shanks RA (2004) J Appl Polym Sci 94:2456

    Article  Google Scholar 

  23. Wong S, Shanks R, Hodzic A (2002) Macromol Mater Eng 287:647

    CAS  Google Scholar 

  24. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Compos Sci Technol 63:1281

    Article  CAS  Google Scholar 

  25. Oksman K, Skrifvarsb M, Selinc JF (2003) Compos Sci Technol 63:1317

    Article  CAS  Google Scholar 

  26. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Compos Sci Technol 63:1287

    Article  CAS  Google Scholar 

  27. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Macromol Mater Eng 288:35

    Article  CAS  Google Scholar 

  28. Brahim SB, Cheikh RB (2007) Compos Sci Technol 67:140

    Article  Google Scholar 

  29. Li Y, Mai YW, Ye L (2006) Compos Sci Technol 60:2037

    Article  Google Scholar 

  30. Arib RMN, Sapuan SM, Hamdan MAMM, Paridah MT, Zaman HMDK (2004) Polym Polym Compos 12:341

    CAS  Google Scholar 

  31. Franco PJH, Gonzalez AV (2005) Compos B 36:597

    Google Scholar 

  32. Rao KMM, Rao KM, Prasad AVR (2010) Mater Des 31:508

    Article  Google Scholar 

  33. Sharkh BFA, Hamid H (2004) Polym Degrad Stab 85:967

    Google Scholar 

  34. Jacoba M, Thomasa S, Varugheseb KT (2004) Compos Sci Technol 64:955

    Article  Google Scholar 

  35. Megiato JD, Ramires C, Frollini E (2010) Indust Crops Prod 31:178

    Article  Google Scholar 

  36. Mohanty S, Varma SK, Nayak SK (2006) Compos Sci Technol 66:538

    Article  CAS  Google Scholar 

  37. Wang W, Sain M, Cooper PA (2005) Polym Degrad Stab 90:540–545

    Google Scholar 

  38. Alsewailem FD, Binkhder YA (2010) J Rein Plast Compos 29:1743

    Article  CAS  Google Scholar 

  39. Jiang L, Chen F, Qian J, Huang J, Wolcott M, Liu L, Zhang J (2010) Indust Eng Chem Res 49:572

    Article  CAS  Google Scholar 

  40. Rao KMM, Prasad AVR, Babu MNVR, Rao KM, Gupta AVSSKS (2007) J Mater Sci 42:3266

    Article  CAS  Google Scholar 

  41. Lee SH, Wang S (2006) Appl Sci Manufact 37(1):80–91

    Google Scholar 

  42. Mohanty AK, Khan MA, Hinrichsen G (2000) Compos Part A 31:143

    Article  Google Scholar 

  43. Vincent JFV (1982) Structural biomaterials. Macmillan, London

    Google Scholar 

  44. Batra SK (1998) Other long vegetable fibres. Handbook of fibre chemistry, New York

    Google Scholar 

  45. Krenchel H (1964) Fibre reinforcement. Akademisk Forlag, Copenhagen

    Google Scholar 

  46. Virk AS, Hall W, Summerscales J (2010) Compos Sci Technol 70:995

    Article  CAS  Google Scholar 

  47. Comstock K, Farrell D, Godwin C, Xi Y (2004) http//depts..washington.edu/poeweb/gradprograms/envmgt/2004symposium/GreenPackagingReport.pdf

  48. Weber CJ, Hauggard V, Festersen R, Bertelsen FG (2002) Food Additives Contaminants 19:172

    Article  CAS  Google Scholar 

  49. Ruban SW (2009) Veterinary World 2:79

  50. Kandemir N, Yemenicioglu A, Mecitoglu C, Elmaci ZS, Arslanoglu A, Goksungur Y, Baysal T (2005) Food Technol Biotechnol 43:343

    CAS  Google Scholar 

  51. Cutter CN (2002) Crit Rev Food Sci Nutr 42:151

    Article  Google Scholar 

  52. Velde KV, Kiekens P (2002) Polym Test 21:433

    Article  Google Scholar 

  53. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  54. Tsuji H (2005) Macromol Biosci 5:569

    Article  CAS  Google Scholar 

  55. Glasser WG (2004) Macromol Symp 208:371

    Article  CAS  Google Scholar 

  56. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Progress Polym Sci 26:1605

    Article  CAS  Google Scholar 

  57. Mohanty AK, Wibowa A, Misra M, Drzal LT (2004) Compos A 35:363

    Article  Google Scholar 

  58. Gatenholm P, Kubat J, Mathiasson A (1992) J Appl Polym Sci 45:1667

    Google Scholar 

  59. Gatenholm P, Mathiasson A (1994) J Appl Polym Sci 51:1231

    Article  CAS  Google Scholar 

  60. Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117

    Article  CAS  Google Scholar 

  61. Bhardwaj R, Mohanty AK (2007) J Biobased Mater Bioenergy 1:191

    Article  Google Scholar 

  62. Vink ETH, Rabago KR, Glassner DA, Grubber PR (2003) Polymer Degrad Stab 80:403

    Article  CAS  Google Scholar 

  63. Theinsathid P, Chandrachai A, Keeratipibul S (2009) J Technol Manag Innov 4:82

    Google Scholar 

  64. Bax B, Mussig J (2008) Compos Sci Technol 68:1601

    Article  CAS  Google Scholar 

  65. Gangster J, Fink HP, Pinnow M (2006) Compos A 37:1796

    Article  Google Scholar 

  66. Bos HL, Mussig J, van den Oever MJA (2005) Compos A 37:1591

    Article  Google Scholar 

  67. Tsuji H, Ikada Y (1999) Polymer 40:6699

    Article  CAS  Google Scholar 

  68. PURAC (2008) Bioplast Mag 3:21

  69. Teijin (2007) Teijin launches BIOFRONT heat-resistant bio-plastic. Teijin Ltd News

  70. Eldridge D (2007) NEC develops bioplastic composite for electronic applications. European Plastics News and Plastics & Rubber Weekly magazines

  71. Van den Oever MJA, Beck B, Mussig J (2010) Compos A 41:1628

    Article  Google Scholar 

  72. Van den Oever MJA, Beck B, Mussig J (2009) Natural fibre—PLA composites: processing and mechanical properties. Recent advances in research on biodegradable polymers and sustainable composites, vol 1. Nova Science Publishers Inc, New York

    Google Scholar 

  73. Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF (2005) Ind Eng Chem Res 44:5593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapasi Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, T., Kao, N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. J Polym Environ 19, 714–725 (2011). https://doi.org/10.1007/s10924-011-0320-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0320-6

Keywords

Navigation