Skip to main content
Log in

Mechanical–Thermal Properties and VOC Emissions of Natural-Flour-Filled Biodegradable Polymer Hybrid Bio-Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The mechanical–thermal properties and volatile organic compound (VOC) emissions of natural-flour-filled, biodegradable polymer bio-composites were investigated according to variation in porous inorganic filler types. At a porous inorganic filler content of 3%, the tensile and flexural strengths of the hybrid bio-composites were not significant changed. However, the coefficient of thermal expansion and thermal expansion of the bio-composites were slightly decreased. Furthermore, the incorporation of the porous inorganic materials into bio-composites slightly increased the E’ values of the hybrid bio-composites over the entire temperature range, although the tan δmax temperature (T g) of the hybrid bio-composites was not significantly changed. At a porous inorganic filler content of 3%, the various odor and VOC emissions of the hybrid bio-composites were significantly decreased because the various oxidation and thermal degradation gases of the natural flour and matrix were absorbed in the pore structures of the porous inorganic fillers and thereby prevented the migration into the final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fernandes EG, Pietrini M, Chiellini E (2004) Biomacromolecules 5:1200–1205

    Article  Google Scholar 

  2. Kim H-S, Kim H-J, Lee J-W, Choi I-G (2006) Polym Degrade Stab 91:1117–1127

    Article  CAS  Google Scholar 

  3. Dominkovics Z, Danyadi L, Pukanszky B (2007) Compos A 38:1893–1901

    Article  Google Scholar 

  4. Yang H-S, Wolcott MP, Kim H-S, Kim S, Kim H-J (2007) Comp Struct 79:369–375

    Article  Google Scholar 

  5. Kori Y, Kitagawa K, Hamada H (2005) J Appl Polym Sci 98:603–612

    Article  CAS  Google Scholar 

  6. Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermochim Acta 451:181–188

    Article  CAS  Google Scholar 

  7. Liao HT, Wu CS (2005) Macromol Mater Eng 290:695–703

    Article  CAS  Google Scholar 

  8. Kim EG, Kim BS, Kim DS (2007) J Appl Polym Sci 103:928–934

    Article  CAS  Google Scholar 

  9. Teserki V, Matzinos P, Panayiotou C (2007) Compos A 38:1893–1901

    Article  Google Scholar 

  10. Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  11. Lee S-H, Wang S (2006) Compos A 37:80–91

    Article  CAS  Google Scholar 

  12. Bhardwaj RB, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2007) Biomacromolecules 7:2044–2051

    Google Scholar 

  13. Yu CWF, Crump DR (2003) Indoor Built Environ 12:299–310

    Article  CAS  Google Scholar 

  14. Bledzki AK, Faruk O, Sperber VE (2006) Macromol Mater Eng 291:449–457

    Article  CAS  Google Scholar 

  15. Calderia I, Caldeira MC, Sousa RB, Belchior AP (2006) J Food Eng 76:202–211

    Article  Google Scholar 

  16. Andersson T, Wessle B, Sandstro J (2002) J Appl Polym Sci 86:1580–1586

    Article  CAS  Google Scholar 

  17. Andersson T, Nielsen T, Wesslen B (2005) J Appl Polym Sci 97:847–858

    Article  Google Scholar 

  18. Duvarci OC, Akdeniz Y, Ozmihci F, Ulku S, Balkose D, Ciftcioglu M (2007) Ceram Int 35:795–801

    Article  Google Scholar 

  19. Lee JF, Lee CK, Juang LC (1999) J Colloid Interface Sci 217:172–176

    Google Scholar 

  20. Kim H-S, Lee B-H, Kim H-J (2007) Polym Test (submitted)

  21. Kim HS, Kim S, Kim H-J, Kim H-G (2006) Macromol Mater Eng 291:1255–1264

    Article  CAS  Google Scholar 

  22. Gomes A, Matsuo T, Goda K, Ohgi J (2007) Compos A 38:1811–1820

    Article  Google Scholar 

  23. Wu C-S (2005) Macromol Biosci 5:352–361

    Article  CAS  Google Scholar 

  24. Kim H-S, Lee B-H, Choi S-W, Kim S, Kim H-J (2007) Compos A 38:1473–1482

    Article  Google Scholar 

  25. Huda MS, Drzal LT, Mohanty AK, Misra M (2007) Compos B 38:367–379

    Article  Google Scholar 

  26. Othman N, Ismail H, Mariatti M (2006) Polym Degrad Stab 91:1761–1774

    Article  CAS  Google Scholar 

  27. Kim H-S, Choi S-W, Lee B-H, Kim S, Kim H-J, Cho CW, Cho D (2007) J Therm Anal Cal 89:821–827

    Article  CAS  Google Scholar 

  28. Dias A, Pillinger A, Valente A (2005) J Cata 229:414–423

    Article  CAS  Google Scholar 

  29. Linuma Y, Muller C, Boge O, Gnauk T, Herrmann H (2007) Atmos Environ (in press)

  30. Majchrzak-Kuceba I, Nowak W (2005) Thermochim Acta 437:67–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Cleaner Production R&D Program and the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Lee, BH., Kim, HJ. et al. Mechanical–Thermal Properties and VOC Emissions of Natural-Flour-Filled Biodegradable Polymer Hybrid Bio-Composites. J Polym Environ 19, 628–636 (2011). https://doi.org/10.1007/s10924-011-0313-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0313-5

Keywords

Navigation