Skip to main content
Log in

Development of Water-Borne Green Polymer Used as a Potential Nano Drug Vehicle and its In Vitro Release Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper describes an ecofriendly development of a nanodrug delivery vehicle from seed oil. The entire synthesis, starting from the ZnO nanoparticle to the polymeric vehicle is purely microwave assisted with minimal usage of organic solvents. Multifunctional features like enhanced UV absorbance, antimicrobial properties and appreciable in vitro release can be attributed to the nanoparticle loaded polymeric vehicle. Characterization of the synthesized species was done through FT-IR, 1HNMR, SEM and XRD. The physical characterizations were carried out using conventional laboratory techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jones M-C, Leroux J-C (1999) Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111

    Article  CAS  Google Scholar 

  2. Nishiyama N, Kataoka K (2006) Current state achievements and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  CAS  Google Scholar 

  3. Ratner BD, Hoffmann AS, Schoen FJ, Lemons JE (eds) (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press

  4. Lligadas G, Ronda J, Galia M, Cadiz V (2007) Biomacromolecules 8:686

    Article  CAS  Google Scholar 

  5. Andjelkovic D, Lorock R (2006) Biomacromolecules 7:927

    Article  CAS  Google Scholar 

  6. Narine S, Yue J, Kong X (2007) J Am Oil Chem Soc 84:173

    Article  CAS  Google Scholar 

  7. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190

    Article  CAS  Google Scholar 

  8. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ (2006) Nanotechnology: a focus on nanoparticles as drug delivery system. J Neuroimmune Pharmacol 1:340–350

    Article  Google Scholar 

  9. Arias JL, Ruiz MA, López-viota M, Delgado AV (2008) Poly (alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: a comparative study. Colloids Surf B Biointerfaces 62:64–70

    Article  CAS  Google Scholar 

  10. Breimer MA, Yevgeny G, Sy S, Sadik OA (2001) Nano Lett 1:305

    Article  CAS  Google Scholar 

  11. Lin Y, Boeker A, He J, Sill K, Xiang H, Abetz C, Li X, Wang J, Emrick T, Long S, Wang Q, Balazs A, Russell TP (2005) Nature 434:55

    Article  CAS  Google Scholar 

  12. Murphy CJ, Orendorff CJ (2005) Adv Mater 17:2173

    Article  CAS  Google Scholar 

  13. Cui T, Cui F, Zhang J, Wang J, Huang J, Lue C, Chen Z, Yang B (2006) J Am Chem Soc 128:6298

    Article  CAS  Google Scholar 

  14. Xiong H-M, Wang Z-D, Xia Y (2006) Adv Mater 18:748

    Article  CAS  Google Scholar 

  15. Couvreur P, Kante B, Grislain L, Roland M, Speiser P (1982) Toxicity of polyalkyl cyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci 71:790–792

    Article  CAS  Google Scholar 

  16. Labhasetwar V, Song C, Levy RJ (1997) Nanoparticle drug delivery systems. Adv Drug Del Rev 24:63–85

    Article  CAS  Google Scholar 

  17. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    Article  CAS  Google Scholar 

  18. Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663

    Article  CAS  Google Scholar 

  19. Groneberg DA, Giersig M, Welte T, Pison U (2006) Nanoparticle-based diagnosis and therapy. Curr Drug Targets 7:643–648

    Article  CAS  Google Scholar 

  20. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  21. Moghaddam AB, Nazari T, Badraghi J, Kazemzad M (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4:247–257

    CAS  Google Scholar 

  22. Alam M, Ashraf SM, Ahmed S (2008) J Polym Res 15:343–350

    Article  CAS  Google Scholar 

  23. Ahmed S, Ashraf SM, Shamim E, Nazir M, Alam M (2005) Prog Org Coat 52:85–91

    Article  Google Scholar 

  24. Gonzalez-Rodriguez ML, Holgado MA, Sanchez-Lafuente C, Robasco AM, Fini A (2002) Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225–234

    Article  CAS  Google Scholar 

  25. Sipahigil O, Gursoy A, Cakalagaglu F, Okar I (2006) Release behaviour & biocompatibility of drug loaded pH sensitive particles. Int J Pharm 311:130–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athar Adil Hashmi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.U., Bharathi, N.P., Shreaz, S. et al. Development of Water-Borne Green Polymer Used as a Potential Nano Drug Vehicle and its In Vitro Release Studies. J Polym Environ 19, 607–614 (2011). https://doi.org/10.1007/s10924-011-0310-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0310-8

Keywords

Navigation