Skip to main content

Advertisement

Log in

Adhesive Performance of Sorghum Protein Extracted from Sorghum DDGS and Flour

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Distillers dried grains with solubles (DDGS) is the main co-product from grain-based ethanol production. The objective of this research was to compare the adhesive performance of three types of sorghum proteins: acetic acid-extracted sorghum protein from DDGS (PI), aqueous ethanol-extracted sorghum protein from DDGS (PII) and acetic acid-extracted sorghum protein from sorghum flour (PF). Physicochemical properties including amino acid composition, and rheological, thermal and morphological properties also were characterized. Results showed that PI had the best adhesion performance in terms of dry, wet and soak adhesion strength, followed by PF and PII. The wet strength of PI at a concentration of 12% protein assembled at 150 °C was 3.15 MPa, compared to 2.17 MPa and 2.59 MPa for PII and PF, respectively. DSC thermograms indicated that the PF protein isolates contained higher levels of carbohydrates than PI and PII; such non-protein contaminants in the PF isolate could be the reason for its lower adhesion strength than PI. In addition, PI might have more hydrophobic amino acids aligned at the protein-wood interface than PII, which could explain the better water resistance of PI. The optimum sorghum protein concentration and pressing temperature for maximum adhesion strength was 12% and 150 °C. PI had a significantly higher wet strength (3.15 MPa) than unmodified soy protein (1.63 MPa for soy protein). The high percentage of hydrophobic amino acids in PI (57%) was likely a key factor in the increased water resistance of PI compared with soy protein (36% hydrophobic amino acids). These results indicated that sorghum protein has huge potential as an alternative to petroleum-based adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DWM (2008) Door & Window Manufacturer Magazine, 9, 6. http://www.usglassmagcom/Door_and_Window_Maker/Backissues/2008/June/sealitup.htm. Accessed 20 Nov 2010

  2. Kumar R, Liu D, Zhang L (2008) J Biobased Mater Bio 2:1

    Article  CAS  Google Scholar 

  3. Pizzi A (2006) J Adhesion Sci Technol 20:829

    Article  CAS  Google Scholar 

  4. Smith AM, Callow JA (2006) Preface in biological adhesives. Springer, Heidelberg

    Book  Google Scholar 

  5. Wang Y, Sun XS, Wang D (2007) J Adhesion Sci Technol 21:1469

    Article  CAS  Google Scholar 

  6. Wang Y (2006) Adhesive performance of soy protein isolate enhanced by chemical modification and physical treatment. Dissertation, Kansas State University

  7. Qi G, Sun XS (2011) J Am Oil Chem Soc 88:271

    Google Scholar 

  8. Wu X, Zhao R, Bean SR, Seib PA, McLauren JS, Madl RL, Tuinstra MR, Lenz MC, Wang D (2007) Cereal Chem 84:130

    Article  CAS  Google Scholar 

  9. Buffo RA, Weller CA, Gennadios A (1997) Cereal Chem 74:473

    Article  CAS  Google Scholar 

  10. Ramos J, Cabral R, Chan F (1984) NSTA Technol J July–Sept:29

  11. Rooney LW, Waniska RD (2000) In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 689–729

    Google Scholar 

  12. Icoz DZ, Dogan H, Kokini JL (2005) Session 51, food chemistry: proteins and enzymes. 2005 IFT annual meeting, July 15–20. New Orleans, LA

  13. Texas Tech University (2009) http://www.depts.ttu.edu/agriculturalsciences/impacts08/fed/sorghum.php. Accessed 20 Nov 2010

  14. U.S. Grain Council (2009) Sorghum. http://www.grains.org/page.ww?section=Barley%2C+Corn+%26+Sorghum&name=Sorghum. Accessed 20 Nov 2010

  15. Bonnardeaux J (2009) Potential uses for distillers grains. http://www.agric.wa.gov.au/content/sust/biofuel/potentialusesgrains042007.pdf. Accessed 20 Nov 2010

  16. Feed Outlook/FDS-10i/September 14, 2010. Economic research service, USDA. http://usda.mannlib.cornell.edu/usda/ers/FDS/2010s/2010/FDS-09-14-2010.pdf. Accessed 14 Sept 2010

  17. Hamaker BR, Mohamed AA, Habben JE, Huang CP, Larkins BA (1995) Cereal Chem 72:583

    CAS  Google Scholar 

  18. Wong JH, Lau T, Cai N, Singh J, Pedersen JF, Vensel WH, Hurkman WJ, Wilson JD, Lemaux PG, Buchanan BB (2009) J Cereal Sci 49:73

    Article  CAS  Google Scholar 

  19. El Nour INA, Peruffo ADB, Curioni A (1998) J Cereal Sci 28:197

    Article  CAS  Google Scholar 

  20. Emmambux NM, Taylor JRN (2009) J Sci Food Agric 57:1045

    Article  CAS  Google Scholar 

  21. Taylor JRN, Schüssler L, Van der Walt WH (1984) J Agric Food Chem 32:149

    Article  CAS  Google Scholar 

  22. Taylor J, Taylor JRN, Dutton MF, Kock S (2005) Cereal Chem 82:485

    Article  CAS  Google Scholar 

  23. Zhao R, Bean SR, Wang D (2008) Cereal Chem 85:837

    Article  CAS  Google Scholar 

  24. Hamaker BR, Bugusu BA (2003) Afripro. In: Belton PS, Taylor JRN (eds) Workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for Africa, paper 08. http://www.afripro.org.uk/. Accessed 20 Nov 2010

  25. Park SH, Bean SR (2003) J Agric Food Chem 51:7050

    Article  CAS  Google Scholar 

  26. Wang Y, Tilley M, Bean S, Sun XS, Wang D (2009) J Agric Food Chem 57:8366

    Article  CAS  Google Scholar 

  27. Emmambux NM, Taylor JRN (2003) J Sci Food Agric 83:402

    Article  CAS  Google Scholar 

  28. AOAC International (1995) Fat(crude) or ether extracts in food and animal feed-Soxhlet method. Official methods of analysis of AOAC International, 15th edn. AOAC International. Method 920.39C. Gaithersburg, MD

  29. AOAC International (1995) Crude protein combustion method. Official methods of analysis of AOAC International, 15th edn. AOAC International. Method 990.03. Gaithersburg, MD

  30. AOCS (1996) Approved method Ba 6a-05: crude fiber analysis in feeds by filter bag technique. Official method and recommended practices, 4th edn. American Oil Chemists’ Society, Champaign

    Google Scholar 

  31. Mo X, Sun XS, Wang D (2004) J Am Oil Chem Soc 81:395

    Article  CAS  Google Scholar 

  32. ASTM D1151-00 (2002) Standard test methods for effect of moisture and temperature on adhesive bonds. In: American Society for Testing and Materials (ed) Annual book of ASTM standards. American Society for Testing and Materials, West Conshohocken, PA, pp 67–69

  33. ASTM D1183-96 (2002) Standard test methods for resistant of adhesives to cyclic laboratory aging condition. In: American Society for Testing and Materials (ed) Annual book of ASTM standards. American Society for Testing and Materials, West Conshohocken, PA, pp 70–73

  34. ASTM D2339-98 (2002) Standard test method for strength properties of adhesives in two-ply wood construction in shear by tension loading. In: American Society for Testing and Materials (ed) Annual book of ASTM standards. American Society for Testing and Materials, West Conshohocken, PA, pp 158–160

  35. Taylor J, Taylor JRN, Dutton MF, Kock SD (2005) Cereal Chem 82(5):485

    Article  CAS  Google Scholar 

  36. Yousif NE, El Tinay AH (2001) Plant Food Hum Nutr 56:175

    Article  CAS  Google Scholar 

  37. Mosse J, Huet JC, Bauedt J (1988) Cereal Chem 65:271

    CAS  Google Scholar 

  38. Cookman DJ, Glatz CE (2009) Bioresour Technol 100:2012

    Article  CAS  Google Scholar 

  39. Youssef AM (1998) Food Chem 63:325

    Article  CAS  Google Scholar 

  40. Skoch LV, Deyoe CW, Shoup FK, Bathurst J, Liang D (1970) Cereal Chem 47:472

    CAS  Google Scholar 

  41. Wu YV, Wall JS (1980) J Agric Food Chem 28:455

    Article  CAS  Google Scholar 

  42. Kyte J, Doolittle RF (1982) J Mol Biol 157:105

    Article  CAS  Google Scholar 

  43. Mokrane H, Amoura H, Belhaneche-Bensemra N, Courin CM, Delcour JA, Nadjemi B (2010) Food Chem 121:719

    Article  CAS  Google Scholar 

  44. Liu Y, Li K (2004) Macromol Rapid Commun 25:1835

    Article  CAS  Google Scholar 

  45. Zhao H, Sagert J, Hwang DS, Waite JH (2009) J Biol Chem 284:23344

    Article  CAS  Google Scholar 

  46. Kamino K (2001) Biochem J 356:503

    Article  CAS  Google Scholar 

  47. Aboubacar A, Hamaker BR (1999) Cereal Chem 79:308

    Article  Google Scholar 

  48. Kelsall DR, Lyons TP (1999) In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook. Nottingham University Press, Nottingham, pp 7–23

    Google Scholar 

  49. Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ind Crop Prod 23:304

    Article  CAS  Google Scholar 

  50. Wang Y, Sun XS, Wang D (2006) ASABE 49:713

    CAS  Google Scholar 

  51. Wool PR, Sun XS (2005) Biobased polymers and composites, 1st edn. Elsevier, Burlington

  52. Belton PS, Delgadillo I, Halford NG, Shewry PR (2006) J Cereal Sci 44:272

    Article  CAS  Google Scholar 

  53. Shull JM, Watterson JJ, Kirleis AW (1991) J Agric Food Chem 39:83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to Dr. Dan Bolye for TEM tests. The authors also thank Dave Trumble for carrying out the chemical analysis. This article has a contribution No. 11-203-J from the Kansas Agricultural Experimental Station, Manhattan, KS 66506, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Wang, Y., Tilley, M. et al. Adhesive Performance of Sorghum Protein Extracted from Sorghum DDGS and Flour. J Polym Environ 19, 755–765 (2011). https://doi.org/10.1007/s10924-011-0305-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0305-5

Keywords

Navigation