Skip to main content
Log in

Crystal and Thermal Properties of PLLA/PDLA Blends Synthesized by Direct Melt Polycondensation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

We herein report the effects of the component ratio and method of blending on the synthesis of stereocomplex poly(lactic acid) (SC-PLA) based on poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) prepolymers. PLLA and PDLA were prepared by direct melt polycondensation of lactic acid (DMP). Combined with the dual catalyst system, PLA prepolymers with Mw more than 20,000 were prepared by DMP. PLLA was mixed by powder blending or melt blended with PDLA. It is revealed that melt-point and spherulite growth rate of SC-PLA is strongly dependent on the perfection of SC structure. The melt point of PLA can be increased by nearly 50 °C because of the particular strong intermolecular interaction between PLLA and PDLA chains. Solid-state polycondensation (SSP) is an efficient method to increase the molecular weight of SC-PLA, but it can have a negative effect on the regularity of linear chains of SC-PLA. Thermogravimetry analyzer (TGA) results show that SC structure cannot cause the delay reaction on the thermal degradation of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  2. Sobkowicz MJ, Dorgan JR, Gneshin KW, Herring AM, McKinnon JT (2008) J Polym Environ 16(2):131–140

    Article  CAS  Google Scholar 

  3. Slager J, Domb AJ (2003) Adv Drug Deliver Rev 55(4):549–583

    Article  CAS  Google Scholar 

  4. Narladkar A, Balnois E, Grohens Y (2006) Macromol Symp 241:34–44

    Article  CAS  Google Scholar 

  5. Tsuji H (2005) Macromol Biosci 5(7):569–597

    Article  CAS  Google Scholar 

  6. Na B, Tian NN, Lv RH, Zou SF, Xu WF, Fu Q (2010) Macromolecules 43(2):1156–1158

    Article  CAS  Google Scholar 

  7. Harris AM, Lee EC (2008) J Appl Polym Sci 107(4):2246–2255

    Article  CAS  Google Scholar 

  8. Suryanegara L, Nakagaito AN, Yano H (2009) Compos Sci Technol 69(7–8):1187–1192

    Article  CAS  Google Scholar 

  9. Tsuji H, Sawada M, Bouapao L (2009) Acs Appl Mater Inter 1(8):1719–1730

    Article  CAS  Google Scholar 

  10. Pan P, Liang Z, Zhu B, Dong T, Inoue Y (2009) Macromolecules 42(9):3374–3380

    Article  CAS  Google Scholar 

  11. Muroya T, Yamamoto K, Aoyagi T (2009) Polym Degrad Stabil 94(3):285–290

    Article  CAS  Google Scholar 

  12. Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Eur Polym J 43(5):1779–1785

    Article  CAS  Google Scholar 

  13. Karikari AS, Edwards WF, Mecham JB, Long TE (2005) Biomacromolecules 6(5):2866–2874

    Article  CAS  Google Scholar 

  14. Zhou WY, Duan B, Wang M, Cheung WL (2009) J Appl Polym Sci 113(6):4100–4115

    Article  CAS  Google Scholar 

  15. Zhao YY, Qiu ZB, Yang WT (2009) Compos Sci Technol 69(5):627–632

    Article  CAS  Google Scholar 

  16. Hu X, An HN, Li ZM, Geng Y, Li LB, Yang CL (2009) Macromolecules 42(8):3215–3218

    Article  CAS  Google Scholar 

  17. Deuring H, Vanekenstein GORA, Challa G, Mason JP, Hogenesch TE (1995) Macromolecules 28(6):1952–1958

    Article  CAS  Google Scholar 

  18. Fukushima K, Kimura Y (2006) Polym Int 55(6):626–642

    Article  CAS  Google Scholar 

  19. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Macromolecules 20(4):904–906

    Article  CAS  Google Scholar 

  20. Ouchi T, Ichimura S, Ohya Y (2006) Polymer 47(1):429–434

    Article  CAS  Google Scholar 

  21. Tsuji H, Horii F, Hyon SH, Ikada Y (1991) Macromolecules 24(10):2719–2724

    Article  CAS  Google Scholar 

  22. Tsuji H, Tezuka Y (2004) Biomacromolecules 5(4):1181–1186

    Article  CAS  Google Scholar 

  23. Fukushima K, Furuhashi Y, Sogo K, Miura S, Kimura Y (2005) Macromol Biosci 5(1):21–29

    Article  CAS  Google Scholar 

  24. Fukushima K, Hirata M, Kimura Y (2007) Macromolecules 40(9):3049–3055

    Article  CAS  Google Scholar 

  25. Fukushima K, Kimura Y (2008) Polym Sci Pol Chem 46(11):3714–3722

    Article  CAS  Google Scholar 

  26. Thakur KAM, Kean RT, Hall ES, Kolstad JJ, Munson EJ (1998) Macromolecules 31(5):1487–1494

    Article  CAS  Google Scholar 

  27. Thakur KAM, Kean RT, Hall ES, Kolstad JJ, Lindgren TA, Doscotch MA, Siepmann JI, Munson EJ (1997) Macromolecules 30(8):2422–2428

    Article  CAS  Google Scholar 

  28. Shyamroy S, Garnaik B, Sivaram S (2005) J Polym Sci Pol Chem 43(10):2164–2177

    Article  CAS  Google Scholar 

  29. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R (1992) Macromolecules 25(16):4114–4118

    Article  CAS  Google Scholar 

  30. Zell MT, Padden BE, Paterick AJ, Thakur KAM, Kean RT, Hillmyer MA, Munson EJ (2002) Macromolecules 35(20):7700–7707

    Article  CAS  Google Scholar 

  31. Kasperczyk JE (1995) Macromolecules 28(11):3937–3939

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program of China (No. 2006AA02Z248), the Program of Shanghai Subject Chief Scientist (No. 07XD14029) and the fund of Shanghai International co-operation of Science and Technology (No. 075207046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Li, J. & Ren, J. Crystal and Thermal Properties of PLLA/PDLA Blends Synthesized by Direct Melt Polycondensation. J Polym Environ 19, 574–581 (2011). https://doi.org/10.1007/s10924-011-0301-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0301-9

Keywords

Navigation