Skip to main content

Advertisement

Log in

Chemically Modified Banana Fiber: Structure, Dielectrical Properties and Biodegradability

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Banana fibers, as well as other lignocellulosic fibers, are constituted of cellulose, hemicellulose, lignin, pectin, wax and water soluble components. The abundance of this fiber combined with the ease of its processing is an attractive feature, which makes it a valuable substitute for synthetic fibers that are potentially toxic. In this work, the structure characterization of the banana fiber modified by alkaline treatment was studied. Some important properties of this fiber changed due to some chemical treatments, such as the crystalline fraction, dielectric behavior, metal removal (governed by solution pH) and biodegradation. Our results showed that treated banana fiber is a low cost alternative for metal removal in aqueous industry effluents. Thus, for regions with low resources, the biosorbents are an alternative to diminish the impact of pollution caused by local industries, besides being a biodegradable product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Joseph S, Sreekala MS, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868

    Article  CAS  Google Scholar 

  2. Pothan LA, Thomas S, Groeninckx G (2006) The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos Part A Appl Sci Manuf 37:1260–1269

    Article  Google Scholar 

  3. Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P, Pavithran C (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polym J 32:1243–1250

    Article  CAS  Google Scholar 

  4. Pothan AL, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293

    Article  CAS  Google Scholar 

  5. Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and aplications. Compos Part A Appl Sci Manuf 38:1694–1709

    Article  Google Scholar 

  6. Georgopoulos ST, Tarantili PA, Avgerinos E, Andreopoulos AG, Koukios EG (2005) Thermoplastic polymers reinforced with fibrous agricultural residues. Polym Degrad Stab 90:303–312

    Article  CAS  Google Scholar 

  7. Morán JI, Alvarez AV, Cyras PV, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  8. Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Low cost adsorbents for waste, wastewater treatment: a review. Sci Total Environ 116:31–52

    Article  CAS  Google Scholar 

  9. Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Camparison for biosorption modeling of heavy metals (Cr(III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process Biochem 40:1319–1322

    Article  CAS  Google Scholar 

  10. Singh KK, Hasan SH, Rastogi, Hazard. RJ (2005) Removal of cadmium from wastewater using agricultural waste rice polish. J Hazard Mater 121:51–58

    Article  CAS  Google Scholar 

  11. JCPDS-International Center for Diffraction Data. JCPDS File 50-2241, 1986

  12. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335

    Article  CAS  Google Scholar 

  13. Chang MM, Chou TC, Tsao GT (1981) Structure, pretreatment and hydrolysis of cellulose. In: Advances in biochemical engineering/biotechnology. Springer, New York, pp 15–42

  14. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  15. Esmeraldo MA (2006) Preparação de Novos Compósitos Suportados em Matriz de Fibra Vegetal, Master′s Degree. Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza-CE-Brazil

    Google Scholar 

  16. Hatakeyama H, Hatakeyama T (1998) Interaction between water and hydrophilic polymers. Thermochim Acta 308:3–22

    Article  CAS  Google Scholar 

  17. Rowland SP (ed) (1980) Water in polymers, ACS Symposium Series. American Chemical Society, Washington DC

    Google Scholar 

  18. Czihak C, Müller M, Schober H, Heuxn L, Vogl G (1999) Dynamics of water adsorbed to cellulose. Physica B 266:87–91

    Article  CAS  Google Scholar 

  19. Einfeldt J, Meiβner D, Kwasniewski A (2001) Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Prog Polym Sci 26:1419–1472

    Article  CAS  Google Scholar 

  20. Einfeldt J, Meiβner D, Kwasniewski A, Einfeldt L (2001) Dielectric spectroscopic analysis of wet and well dried starches in comparison with other polysaccharides. Polymer 42:7049–7062

    Article  CAS  Google Scholar 

  21. Einfeldt J, Meißner D, Kwasniewski A (2000) Comparison of the molecular dynamics of celluloses and related polysaccharides in wet and dried states by means of dielectric spectroscopy. Macromol Chem Phys 201:1969–1975

    Article  CAS  Google Scholar 

  22. Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309

    Article  CAS  Google Scholar 

  23. Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  24. Pino GH, Mesquita LMS, Torem ML, Pinto GAS (2006) Biosorption of cadmium by green coconut shell powder. Miner Eng 19:380–387

    Article  CAS  Google Scholar 

  25. Fiol N, Villaescusa I, Martinez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb(II), Ni(II), Cu (II), and Cd (II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140

    Article  CAS  Google Scholar 

  26. Kalyani S, Rao PS, Krishnaiah A (2004) Removal of nickel (II) from aqueous solutions using marie macroalgae as the sorbing biomass. Chemosphere 57:1225–1229

    Article  CAS  Google Scholar 

  27. Sousa FW et al (2009) Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory. J Environ Manag 90:3340–3344

    Article  CAS  Google Scholar 

  28. Boonamnuayvitaya V et al (2004) Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol 35:11–22

    Article  CAS  Google Scholar 

  29. Dhakal RP, Ghimire KN, Inoue K (2005) Adsorptive separation of heavy metal from an aquatic environment using orange waste. Hydrometallurgy 79:182–190

    Article  CAS  Google Scholar 

  30. Meunier N et al (2003) Lead removal from acidic solutions by sorption on coca shells: effect of some parameters. J Environ Eng 8:693–698

    Google Scholar 

  31. Quek SY, Wase DAJ, Forster CF (1998) The use of sagowaste for the sorption of lead and copper. Water SA 3:251–256

    Google Scholar 

  32. Sciban M, Kalasnja M, Skrbic B (2006) Modified softwood sawdust as adsorbent of heavy metal ions from water. J Hazard Mater 2:266–271

    Article  Google Scholar 

  33. Shukla SS et al (2005) Removal of nickel from aqueous solutions by saw dust. J Hazard Mater 121:243–246

    Article  CAS  Google Scholar 

  34. Francisco CFB et al (2008) Removal of copper, nickel and zinc ions from aqueous solution by chitosan-8-hydroxyquinoline beads. Clean 3:292–298

    Google Scholar 

  35. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  36. Megiatto Jackson D Jr, Silva Cristina G, Rosa Derval S, Frollini Elisabete (2008) Sisal chemically modified with lignins: correlation between fibers and phenolic composites properties. Polym Degrad Stab 93:1109–1121

    Article  CAS  Google Scholar 

  37. Barreto ACH, Esmeraldo MA, Derval SR, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with juta fiber: microstructure, biodegrability, and mechanical properties. Pol Compos. doi:10.1002/pc.20990

Download references

Acknowledgements

This work was partly sponsored by CAPES and CNPq (Brazilian agencies). Our special thanks to L. A. R. Fechine for the language revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. A. Fechine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreto, A.C.H., Costa, M.M., Sombra, A.S.B. et al. Chemically Modified Banana Fiber: Structure, Dielectrical Properties and Biodegradability. J Polym Environ 18, 523–531 (2010). https://doi.org/10.1007/s10924-010-0216-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0216-x

Keywords