Skip to main content
Log in

Valorisation of Vegetal Wastes as a Source of Cellulose and Cellulose Derivatives

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Different qualities of CMC were prepared from an agricultural residue (date palm rachis) and a marine waste (Posidonia oceanica). These starting lignocellulosic materials were used as such and after chemical pulping and bleaching. The carboxymethylation reaction was carried out in presence of NaOH (40%) and monochloroacetic acid (ClCH2COOH, MAC), in n-butanol as the reaction solvent. The substitution degrees (DS) of the obtained CMCs varied from 0.67 to 1.62 and between 0.98 and 1.86, for P. oceanica and date palm rachis, respectively. The CP-MAS 13C-NMR spectra of the prepared polyelectrolytes displayed the presence of the main peaks associated with cellulose macromolecules (C1–C6) and that corresponding to carboxyl functions at around 175 ppm. Unfortunately, the peak attributed to methylene groups neighbouring carboxyl moieties are overlapped by C2 and C3, which renders them hardly detectable. Nevertheless, it is worth noting that the CP-MAS 13C-NMR spectra revealed the presence of different signals originating from residual impurities (ca. 27 ppm), such as traces of lignin macromolecules (110–150 ppm) and methyl groups attributed to hemicelluloses. Work is in progress to establish a more efficient purification procedure, in order to have more accurate values of DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguir C, M’henni MF (2006) J Appl Polym Sci 98:1808–1816

    Article  Google Scholar 

  2. Barai BK, Singhal RS, Kulkarni PR (1997) Carbohydr Polym 32:229–231

    Article  CAS  Google Scholar 

  3. Heinze T, Pfeiffer K (1999) Angew Makromol Chim 266:37–45

    Article  CAS  Google Scholar 

  4. Mario P, Adinugraha DW, Haryadi D (2005) Carbohydr Polym 62:164–169

    Article  Google Scholar 

  5. Togrul H, Arslan N (2003) Carbohydr Polym 54:73–82

    Article  CAS  Google Scholar 

  6. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin, p 232 (ISBN 3-540-32103-9)

  7. Schilling CH, Tomasik P, Karpovich DS, Hart B, Shepardson S, Garcha J, Boettcher PT (2004) J Polym Environ 12:257–264

    Article  CAS  Google Scholar 

  8. Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA, Goynes WR Jr, Edwards JV, Hunter L, McAlister DD, Gamble GR (2007) Cotton fibre chemistry and technology. CRC Press, Boca Raton (ISBN 1420045873)

  9. Gullichsen J, Paulapuro H (1999) J Tappi 10:810

    Google Scholar 

  10. Barba C, Rinaudo M, Farriol X (2002) Cellulose 9:327–335

    Article  CAS  Google Scholar 

  11. Panter G, Kužnik A, Jerala R (2009) Curr Opin Mol Ther 11:133–145

    CAS  Google Scholar 

  12. Antunes A, Amaral E, Belgacem MN (2000) Ind Crops Prod 12:85–91

    Article  CAS  Google Scholar 

  13. Dutt D, Upadhyaya JS, Tyagi CH, Kumar A, Lal M (2008) Ind Crops Prod 28:128–136

    Article  CAS  Google Scholar 

  14. Chia CH, Zakaria S, Nguyen KL, Abdullah M (2008) Ind Crops Prod 28:333–339

    Article  CAS  Google Scholar 

  15. Hedjazi S, Kordsachia O, Patt R, Latibari AJ, Tschirner U (2008) Ind Crops Prod 62:142–148

    CAS  Google Scholar 

  16. Gezguez I, Dridi-Dhaouadi S, Mhenni F (2009) Ind Crops Prod 29:197–204

    Article  Google Scholar 

  17. Khristova K, Kordsachia O, Khider T (2005) Bioresour Technol 96:79–85

    Article  CAS  Google Scholar 

  18. Mahumd MU (1987) Acta Polym 38:172–176

    Article  Google Scholar 

  19. Bandrup J, Immergut EH (1989) Polymer handbook, 3rd edn, Section VII. Wiley, New York

  20. Tapio S, Daniel V, Erkki PE (1994) Ind Eng Chem Res 33:1454–1459

    Article  Google Scholar 

  21. Wilson DeK (1960) Sven Papperstidn 63:714–715

    CAS  Google Scholar 

  22. Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Bioresour Technol 101:775–780

    Article  CAS  Google Scholar 

  23. Hagege R (1998) Technique de l’ingénieurs, plastiques et composites, Edition TI, Paris, (A3980)

  24. Lewin M, Eli MP (1998) Handbook of fibers chemistry, 2nd edn. Wiley Interscience, New York, p 544

  25. Pulkkinen I, Fiskari J, Alopaeus V (2009) J Appl Sci 9:3991–3998

    Article  CAS  Google Scholar 

  26. Bootten TJ, Harris PJ, Melton LD, Newman RH (2009) Biomacromolecules 10:2961–2967

    Article  CAS  Google Scholar 

  27. Wise LE, Murphy M, D’Addieco AA (1946) Pap Trade J 122:35–43

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would express their sincere thanks to “IFC”, Institut de Coopération Francaise de l’ambassade de France en Tunisie and the Région Rhône Alpes (Mira program) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Belgacem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khiari, R., Mhenni, M.F., Belgacem, M.N. et al. Valorisation of Vegetal Wastes as a Source of Cellulose and Cellulose Derivatives. J Polym Environ 19, 80–89 (2011). https://doi.org/10.1007/s10924-010-0207-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0207-y

Keywords

Navigation