Skip to main content

Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM

Abstract

The main objective of this work was to extract microcrystalline cellulose (MCC) particles from different cellulosic resources like cotton, jute, newsprint, filter paper and investigate their suitability as green reinforcing material in biocomposites. The MCC particles were extracted by acid hydrolysis with 64% sulphuric acid. The processing parameters like acid concentration, temperature, time and mechanical force were kept constant. The MCC particles were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analysis, Fourier transform infrared spectroscopy and thermogravimetric analysis. The viscoelastic properties of the MCC particles were investigated with the help of nanoindentation technique for the first time. The acid hydrolysis changed the %crystallinity and crystallite sizes of the MCC particles compared to their source materials. The modulus and hardness of the MCC particles varied significantly depending on their precursors. The presence of non-cellulosic constituents controlled the deformation behaviour of the MCC particles. The thermal stability of the MCC particles was correlated with the tangling effect of the flexible cellulose chains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Tang LG, Hon David NS, Pan SH, Zhu YQ, Wang ZW, Zhen Z (1996) J Appl Polym Sci 59:483–488

    CAS  Article  Google Scholar 

  2. 2.

    Shlieout G, Arnold K, Muller G (2002) AAPS PharmScitech 3(2): 1–10 (article 11)

  3. 3.

    Lu Y, Weng L, Cao X (2006) Carbohydr Polym 63:198–204

    CAS  Article  Google Scholar 

  4. 4.

    Chakraborty A, Sain M, Holzforschung MK (2005) Cat Inst 59:102–107

    CAS  Google Scholar 

  5. 5.

    Choi Y, Simonsen J (2006) J Nanosci Nanotechnol 6(3):633–639

    CAS  Article  Google Scholar 

  6. 6.

    Chakraborty A, Sain M, Kortschot M, Cutler S (2007) J Biobased Mater Bioenergy 1:71–77

    Google Scholar 

  7. 7.

    Bhatnagar A, Sain M (2007) J Reinf Plast Compos 24:1259–1268

    Article  Google Scholar 

  8. 8.

    Angle`s MN, Dufresne A (2000) Macromolecules 33:8344–8353

    CAS  Article  Google Scholar 

  9. 9.

    Samir MASA, Alloin F, Paillet M, Dufresne A (2004) Macromolecules 37:4313–4316

    CAS  Article  Google Scholar 

  10. 10.

    Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Biomacromolecules 9:1579–1585

    CAS  Article  Google Scholar 

  11. 11.

    Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Carbohydr Polym 68:235–241

    CAS  Article  Google Scholar 

  12. 12.

    Barun B, Dorgan JR (2009) Biomacromolecules 10:334–341

    Article  Google Scholar 

  13. 13.

    Habibi Y, Dufresne A (2008) Biomacromolecules 9:1974–1980

    CAS  Article  Google Scholar 

  14. 14.

    Mouro RC, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buleon A (2003) Carbohydr Polym 53:241–252

    Article  Google Scholar 

  15. 15.

    Viet D, Candanedo BS, Gray GD (2007) Cellulose. doi:10.1007/s10570-006-9093-9

    Google Scholar 

  16. 16.

    Bai W, Holbery J, Li K (2009) Cellulose. doi:10.1007/s10570-009-9277-1

    Google Scholar 

  17. 17.

    Bondeson D, Mathew A, Oksman K (2006). doi:10.1007/s10570-006-9061-4

  18. 18.

    Ahola S, Salmi J, Johansson SL, Laine J, Osterberg M (2008) Biomacromolecules 9:1273–1282

    CAS  Article  Google Scholar 

  19. 19.

    Li Zhou, Renneckar S, Barone RJ (2009) Cellulose. doi:10.1007/s10570-009-9363-4

    Google Scholar 

  20. 20.

    Seydibeyoglu OM, Oksman K (2008) Compos Sci Technol 68:908–914

    Article  Google Scholar 

  21. 21.

    Chen Y, Liu C, Chang RP, Cao X, Anderson PD (2009) Carbohydr Polym 76:607–615

    CAS  Article  Google Scholar 

  22. 22.

    Pandey JK, Lee JW, Chu WS, Kim CS, Lee CS, Ahn SH (2008) Macromol Res 16:396

    CAS  Google Scholar 

  23. 23.

    Dong X, Kimura T, Revol J, Gray GD (1996) Langmuir 12:2076–2082

    CAS  Article  Google Scholar 

  24. 24.

    Klemm D, Philipp B, Heinz T, Heinz U, Wagenknecht W (2004) Comprehensive Cellulose Chemistry, vol 1. Fundamental and Analytical Methods, Wiley-VCH publication

  25. 25.

    Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) Cellulose. doi:10.1007/s1070-009-9280-6

    Google Scholar 

  26. 26.

    Revol JF, Dietrich A, Goring DAI (1987) Can J Chem 65:1724–1725

    CAS  Article  Google Scholar 

  27. 27.

    Wang S, Cheng Q, Rials GT, Lee HS (2007) Proceedings of the Pacific Rim bio-based composites symposium

  28. 28.

    Sinha E, Rout SK (2009) Bull Mater Sci 32:65–76

    CAS  Article  Google Scholar 

  29. 29.

    Schniewind AP (ed) (1989) Concise encyclopaedia of wood and wood based materials, 1st ed. Pergamon Press, Elmsford, pp 271–273. http://books.google.co.in/books?isbn=081382446X

Download references

Acknowledgements

Dipa Ray is thankful to AICTE (All India Council for Technical Education), Government of India, for granting her a project. Authors are grateful to Dr. P. C. Basu (Director, Petrology Division) and Ms. Kaberi Banerjee of Geological Survey of India, Kolkata, for their kind support in doing the particle size analysis. Dr. Sabyasachi Som and Mr. U. Kundu are gratefully acknowledged for their support in doing SEM analysis. Authors are also thankful to Mr. Shailendranath Dey of Indian Institute of Chemical Biology (IICB), Kolkata, India, for his help in doing the TEM analysis. Mr. Arijit Sinha (Research Scholar of BESU, Shibpur, Howrah) is also thankfully acknowledged for doing the Nanoindentation test.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipa Ray.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Das, K., Ray, D., Bandyopadhyay, N.R. et al. Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. J Polym Environ 18, 355–363 (2010). https://doi.org/10.1007/s10924-010-0167-2

Download citation

Keywords

  • Microcrystalline cellulose
  • Viscoelastic behavior
  • Hardness
  • Modulus
  • Nanoindentation test