Skip to main content
Log in

Dynamic Mechanical Behavior and Thermal Characterization of Biofilms Based on Starch Modified by Fungi Isolates

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Starches modified by Ophiostoma spp. have been investigated to develop bio-materials with enhanced mechanical and physical properties for thermoplastic applications. In this study, glass transition temperature (Tg) of modified starches was investigated in both dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) to detect molecular changes in the starch’s structure. Overall, two thermal transitions were observed in modified starches, as opposed to one in their native counterparts. Scanning electron microscopy of granular modified starch indicated visible damages and internal structural perturbations in addition to occlusion of granular pores by extraneous materials owing to possible enzymatic degradation and production of secondary metabolites. Modified starches registered two-fold improvement in storage modulus as compared to that of native starches. From the study of second derivative of the mass loss against temperature, two thermal transitions were also identified in modified starches. X-ray diffraction analyses showed that crystalline regions of the starch granules remained intact after the modification. It is proposed that the second phase transition potentially corresponds to modified amylose fractions and/or exopolysaccharides produced by the fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yua L, Deana K, Li L (2006) Prog Polym Sci 31:576

    Article  Google Scholar 

  2. Hulleman SHD, Janssen FHP, Feil H (1998) Polymer 39:2043

    Article  CAS  Google Scholar 

  3. Van Soest JJG, Borger DB (1997) J Appl Polym Sci 64:631

    Article  Google Scholar 

  4. Angles MN, Dufresne A (2001) Macromolecules 34:2921

    Article  CAS  Google Scholar 

  5. Chang YP, Cheah PB, Seow CC (2000) J Food Sci 65:445

    Article  CAS  Google Scholar 

  6. Avérous L, Fringant C (2001) Polym Eng Sci 41:727

    Article  Google Scholar 

  7. Follain N, Joly C, Dole P, Bliard C (2005) J Appl Polym Sci 97:1783

    Article  CAS  Google Scholar 

  8. Averous L, Halley P (2009) Biofuels, Bioprod Biorefin 3:329

    Article  CAS  Google Scholar 

  9. Rahmat AR, Rahmana WA, Sina LT, Yussufa AA (2009) Mater Sci Eng, C 29:2370

    Article  CAS  Google Scholar 

  10. Rajan A, Abraham T (2006) Bioprocess Biosyst Eng 29:65

    Article  CAS  Google Scholar 

  11. Gotlieb K, Capelle A (2005) Starch derivatization: fascinating and unique industrial opportunities. Wageningen Academic Publishers, The Netherlands

    Google Scholar 

  12. Fang J, Fowler P, Sayers C, Williams P (2004) Carbohydr Polym 55:283

    Article  CAS  Google Scholar 

  13. Shogren R (2003) Carbohydr Polym 52:319

    Article  CAS  Google Scholar 

  14. Stepto R (2003) Macromol Symp 201:203

    Article  CAS  Google Scholar 

  15. Sain M, Jeng R, Hubbes M (2008) US Patent Appl. US 2008/0308965 A1, 18 Dec 2008

  16. Jeng R, Huang C, Sain M, Hubbes M, Rodriguez A, Saville A (2007) For Pathol 37:80

    Google Scholar 

  17. Huang B, Jeng R, Sain M, Saville B, Hubbes M (2006) Bioresources 1:257

    Google Scholar 

  18. Kasemwong K, Plyachomkwan K, Wansuksri R, Sriroth K (2008) Starch/Starke 60:624

    Article  CAS  Google Scholar 

  19. O’Brien S, Wang Y-J (2007) Carbohydr Polym 72:597

    Article  Google Scholar 

  20. Binz T, Canevascini G (1996) Physiol Mol Plant Pathol 49:159

    Article  CAS  Google Scholar 

  21. Przybyl K, Dahm H, Ciesielska A, Molinski K (2006) For Pathol 36:58

    Google Scholar 

  22. Lim S, Chang E, Chung H (2001) Carbohydr Polym 46:107

    Article  CAS  Google Scholar 

  23. Fishman M, Coffin D, Onwulata I, Konstance R (2004) Carbohydr Polym 57:401

    Article  CAS  Google Scholar 

  24. De Graaf A, Karman AP, Janseen LP (2003) Starch/Stärke 55:80

    Article  Google Scholar 

  25. Xie F, Yu L, Chen L, Li L (2008) Carbohydr Polym 72:229

    Article  CAS  Google Scholar 

  26. Myllarinen P, Partanen R, Seppala J, Forssell P (2002) Carbohydr Polym 50:355

    Article  CAS  Google Scholar 

  27. Ma X, Chang P, Yu J, Sumborg M (2009) Carbohydr Polym 75:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to the National Council on Science and Technology (CONACYT), Mexico, BioCorp Canada Foundation and Natural Sciences and Engineering Research Council of Canada (NSERC) strategic grant for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata B. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, A.U., Ghosh, S.B., Jeng, R. et al. Dynamic Mechanical Behavior and Thermal Characterization of Biofilms Based on Starch Modified by Fungi Isolates. J Polym Environ 18, 430–436 (2010). https://doi.org/10.1007/s10924-010-0163-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0163-6

Keywords

Navigation