Journal of Polymers and the Environment

, Volume 18, Issue 3, pp 430–436 | Cite as

Dynamic Mechanical Behavior and Thermal Characterization of Biofilms Based on Starch Modified by Fungi Isolates

  • Arturo U. Rodriguez
  • Subrata B. Ghosh
  • Robert Jeng
  • Mohini M. Sain
Original Paper

Abstract

Starches modified by Ophiostoma spp. have been investigated to develop bio-materials with enhanced mechanical and physical properties for thermoplastic applications. In this study, glass transition temperature (Tg) of modified starches was investigated in both dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) to detect molecular changes in the starch’s structure. Overall, two thermal transitions were observed in modified starches, as opposed to one in their native counterparts. Scanning electron microscopy of granular modified starch indicated visible damages and internal structural perturbations in addition to occlusion of granular pores by extraneous materials owing to possible enzymatic degradation and production of secondary metabolites. Modified starches registered two-fold improvement in storage modulus as compared to that of native starches. From the study of second derivative of the mass loss against temperature, two thermal transitions were also identified in modified starches. X-ray diffraction analyses showed that crystalline regions of the starch granules remained intact after the modification. It is proposed that the second phase transition potentially corresponds to modified amylose fractions and/or exopolysaccharides produced by the fungi.

Keywords

Exopolysaccharide Glass transition Starch gelatinization Differential thermal analysis Dynamic mechanical analysis Crystallinity 

Notes

Acknowledgments

The authors gratefully acknowledge to the National Council on Science and Technology (CONACYT), Mexico, BioCorp Canada Foundation and Natural Sciences and Engineering Research Council of Canada (NSERC) strategic grant for financial support of this study.

References

  1. 1.
    Yua L, Deana K, Li L (2006) Prog Polym Sci 31:576CrossRefGoogle Scholar
  2. 2.
    Hulleman SHD, Janssen FHP, Feil H (1998) Polymer 39:2043CrossRefGoogle Scholar
  3. 3.
    Van Soest JJG, Borger DB (1997) J Appl Polym Sci 64:631CrossRefGoogle Scholar
  4. 4.
    Angles MN, Dufresne A (2001) Macromolecules 34:2921CrossRefGoogle Scholar
  5. 5.
    Chang YP, Cheah PB, Seow CC (2000) J Food Sci 65:445CrossRefGoogle Scholar
  6. 6.
    Avérous L, Fringant C (2001) Polym Eng Sci 41:727CrossRefGoogle Scholar
  7. 7.
    Follain N, Joly C, Dole P, Bliard C (2005) J Appl Polym Sci 97:1783CrossRefGoogle Scholar
  8. 8.
    Averous L, Halley P (2009) Biofuels, Bioprod Biorefin 3:329CrossRefGoogle Scholar
  9. 9.
    Rahmat AR, Rahmana WA, Sina LT, Yussufa AA (2009) Mater Sci Eng, C 29:2370CrossRefGoogle Scholar
  10. 10.
    Rajan A, Abraham T (2006) Bioprocess Biosyst Eng 29:65CrossRefGoogle Scholar
  11. 11.
    Gotlieb K, Capelle A (2005) Starch derivatization: fascinating and unique industrial opportunities. Wageningen Academic Publishers, The NetherlandsGoogle Scholar
  12. 12.
    Fang J, Fowler P, Sayers C, Williams P (2004) Carbohydr Polym 55:283CrossRefGoogle Scholar
  13. 13.
    Shogren R (2003) Carbohydr Polym 52:319CrossRefGoogle Scholar
  14. 14.
    Stepto R (2003) Macromol Symp 201:203CrossRefGoogle Scholar
  15. 15.
    Sain M, Jeng R, Hubbes M (2008) US Patent Appl. US 2008/0308965 A1, 18 Dec 2008Google Scholar
  16. 16.
    Jeng R, Huang C, Sain M, Hubbes M, Rodriguez A, Saville A (2007) For Pathol 37:80Google Scholar
  17. 17.
    Huang B, Jeng R, Sain M, Saville B, Hubbes M (2006) Bioresources 1:257Google Scholar
  18. 18.
    Kasemwong K, Plyachomkwan K, Wansuksri R, Sriroth K (2008) Starch/Starke 60:624CrossRefGoogle Scholar
  19. 19.
    O’Brien S, Wang Y-J (2007) Carbohydr Polym 72:597CrossRefGoogle Scholar
  20. 20.
    Binz T, Canevascini G (1996) Physiol Mol Plant Pathol 49:159CrossRefGoogle Scholar
  21. 21.
    Przybyl K, Dahm H, Ciesielska A, Molinski K (2006) For Pathol 36:58Google Scholar
  22. 22.
    Lim S, Chang E, Chung H (2001) Carbohydr Polym 46:107CrossRefGoogle Scholar
  23. 23.
    Fishman M, Coffin D, Onwulata I, Konstance R (2004) Carbohydr Polym 57:401CrossRefGoogle Scholar
  24. 24.
    De Graaf A, Karman AP, Janseen LP (2003) Starch/Stärke 55:80CrossRefGoogle Scholar
  25. 25.
    Xie F, Yu L, Chen L, Li L (2008) Carbohydr Polym 72:229CrossRefGoogle Scholar
  26. 26.
    Myllarinen P, Partanen R, Seppala J, Forssell P (2002) Carbohydr Polym 50:355CrossRefGoogle Scholar
  27. 27.
    Ma X, Chang P, Yu J, Sumborg M (2009) Carbohydr Polym 75:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arturo U. Rodriguez
    • 1
  • Subrata B. Ghosh
    • 1
  • Robert Jeng
    • 1
  • Mohini M. Sain
    • 1
  1. 1.Faculty of Forestry, Centre for Biocomposites and Biomaterials ProcessingUniversity of TorontoTorontoCanada

Personalised recommendations