Skip to main content
Log in

Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The influence of interfacial matrix/particle adhesion on the mechanical properties of poly(lactic acid) (PLA) micro-composites was investigated. The tensile strength of PLA/wood-flour micro-composites is almost independent of wood-flour content, suggesting only weak adhesion exists between the PLA matrix and the wood-flour particles. The addition of wood-flour resulted in an increase of up to 95% in the tensile modulus, in comparison with pure PLA, which showed a more resilient matrix. The addition of a coupling agent, methylenediphenyl-diisocyanate (MDI) to the composition resulted in an increase in tensile strength and tensile modulus of the micro-composites, of 10 and 135%, respectively, indicating enhanced matrix–particle interfacial adhesion. SEM and electron probe microanalysis provided evidence of improved interfacial adhesion between PLA and wood-flour particles from the addition of MDI. In contrast, addition of PEAA resulted in a micro-composite displaying substantially reduced tensile strength, up to 35% and a slightly increased in impact strength, up to 15%, consistent with the introduction of the rubbery PEAA component into the polymeric matrix. No evidence for increased matrix–particle adhesion was found for the PLA/wood-flour micro-composites containing PEAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Psomiadou E et al (1997) Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2. Carbohydr Polym 33(4):227–242

    Article  CAS  Google Scholar 

  2. Puglia D, Biagiotti J, Kenny JM (2004) A review on natural fibre-based composites—part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibres 1(3):43

    Google Scholar 

  3. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):24

    Google Scholar 

  4. Arvanitoyannis IS (1999) Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. J Macromol Sci C39(2):205–271

    CAS  Google Scholar 

  5. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Progr Polym Sci 31(6):576–602

    Article  CAS  Google Scholar 

  6. Shah BL et al (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29(6):655–663

    Article  CAS  Google Scholar 

  7. Pilla S et al (2008) Polylactide-pine wood flour composites. Polym Eng Sci 48(3):578–587

    Article  CAS  Google Scholar 

  8. Oksman K, Skrivars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:8

    Article  Google Scholar 

  9. Alvarez VA, Ruscekaite RA, Vazquez A (2003) Mechanical properties and water absorption behaviour of composites made from a biodegradable matrix and alkaline treated fibres. J Compos Mater 37(17):14

    Article  Google Scholar 

  10. Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A 37(1):80–91

    Article  CAS  Google Scholar 

  11. Shibata M et al (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng 288:9

    Article  Google Scholar 

  12. Plackett D et al (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63:10

    Article  Google Scholar 

  13. Shibata M et al (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92(6):3857–3863

    Article  CAS  Google Scholar 

  14. Huda MS et al (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44(15):5593–5601

    Article  CAS  Google Scholar 

  15. Huda MS et al (2005) “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40:9

    Article  Google Scholar 

  16. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025

    Article  CAS  Google Scholar 

  17. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  CAS  Google Scholar 

  18. Tserki V, Matzinos P, Panayiotou C (2006) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos A 37:8

    Article  Google Scholar 

  19. Cava D et al (2007) Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography. J Chromatogr A 1148(1):86–91

    Article  CAS  Google Scholar 

  20. Dominkovics Z, Dányádi L, Pukánszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos A 38(8):1893–1901

    Article  Google Scholar 

  21. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibres and performance of the resulting biocomposites: an overview. Compos Interf 8(5):31

    Article  Google Scholar 

  22. Abdul Khalil HPS, Ismail H (2000) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20(1):65–75

    Article  Google Scholar 

  23. Sain M et al (2005) Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos 24(2):121–130

    Article  CAS  Google Scholar 

  24. Wang H, Sun X, Seib P (2002) Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J Appl Polym Sci 84(6):1257–1262

    Article  CAS  Google Scholar 

  25. Wang H, Sun X, Seib P (2003) Properties of poly(lactic acid) blends with various starches as affected by physical aging. J Appl Polym Sci 90(13):3683–3689

    Article  CAS  Google Scholar 

  26. Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in woof fibre-polypropylene composites. J Mater Sci 34:11

    Article  Google Scholar 

  27. Bogoeva-Gaceva G et al (2007) Natural fiber eco-composites. Polym Compos 28(1):98–107

    Article  CAS  Google Scholar 

  28. Yu L et al (2006) Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. J Appl Polym Sci 103:7

    Google Scholar 

  29. Yu L et al (2007) Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. J Appl Polym Sci 103(2):812–818

    Article  CAS  Google Scholar 

  30. Oksman K, Lindberg H (1998) Influence of thermoplastic elastomers on adhesion in polyethylene-wood flour composites. J Appl Polym Sci 68(11):1845–1855

    Article  CAS  Google Scholar 

  31. Wang Y et al (2003) Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym Eng Sci 43(4):933–945

    Article  CAS  Google Scholar 

  32. Sombatsompop N, Yotinwattanakumtorn C, Thongpin C (2005) Influence of type and concentration of maleic anhydride grafted polypropylene and impact modifiers on mechanical properties of PP/wood sawdust composites. J Appl Polym Sci 97(2):475–484

    Article  CAS  Google Scholar 

  33. Hristov VN, Lach R, Grellmann W (2004) Impact fracture behavior of modified polypropylene/wood fiber composites. Polym Test 23(5):581–589

    Article  CAS  Google Scholar 

  34. Hristov VN et al (2004) Deformation mechanisms and mechanical properties of modified polypropylene/wood fiber composites. Polym Compos 25(5):521–526

    Article  CAS  Google Scholar 

  35. Huda MS et al (2006) Wood-fibre reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:14

    Article  Google Scholar 

  36. Bengtsson M, Oksman K (2006) The use of silane technology in crosslinking polyethylene/wood flour composites. Compos A 37(5):752–765

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Microscopy and Microanalysis Facility at RMIT University for providing access to their SEM facilities for the work on the characterisation of fracture morphology, Mr. Colin MacRae for his assistance with the Electron probe analysis and Dr. Bill Tiganis for his assistance with obtaining the optical microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petinakis, E., Yu, L., Edward, G. et al. Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. J Polym Environ 17, 83–94 (2009). https://doi.org/10.1007/s10924-009-0124-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-009-0124-0

Keywords

Navigation