Abstract
The influence of interfacial matrix/particle adhesion on the mechanical properties of poly(lactic acid) (PLA) micro-composites was investigated. The tensile strength of PLA/wood-flour micro-composites is almost independent of wood-flour content, suggesting only weak adhesion exists between the PLA matrix and the wood-flour particles. The addition of wood-flour resulted in an increase of up to 95% in the tensile modulus, in comparison with pure PLA, which showed a more resilient matrix. The addition of a coupling agent, methylenediphenyl-diisocyanate (MDI) to the composition resulted in an increase in tensile strength and tensile modulus of the micro-composites, of 10 and 135%, respectively, indicating enhanced matrix–particle interfacial adhesion. SEM and electron probe microanalysis provided evidence of improved interfacial adhesion between PLA and wood-flour particles from the addition of MDI. In contrast, addition of PEAA resulted in a micro-composite displaying substantially reduced tensile strength, up to 35% and a slightly increased in impact strength, up to 15%, consistent with the introduction of the rubbery PEAA component into the polymeric matrix. No evidence for increased matrix–particle adhesion was found for the PLA/wood-flour micro-composites containing PEAA.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Psomiadou E et al (1997) Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2. Carbohydr Polym 33(4):227–242
Puglia D, Biagiotti J, Kenny JM (2004) A review on natural fibre-based composites—part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibres 1(3):43
Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):24
Arvanitoyannis IS (1999) Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. J Macromol Sci C39(2):205–271
Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Progr Polym Sci 31(6):576–602
Shah BL et al (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29(6):655–663
Pilla S et al (2008) Polylactide-pine wood flour composites. Polym Eng Sci 48(3):578–587
Oksman K, Skrivars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:8
Alvarez VA, Ruscekaite RA, Vazquez A (2003) Mechanical properties and water absorption behaviour of composites made from a biodegradable matrix and alkaline treated fibres. J Compos Mater 37(17):14
Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A 37(1):80–91
Shibata M et al (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng 288:9
Plackett D et al (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63:10
Shibata M et al (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92(6):3857–3863
Huda MS et al (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44(15):5593–5601
Huda MS et al (2005) “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40:9
Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025
George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485
Tserki V, Matzinos P, Panayiotou C (2006) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos A 37:8
Cava D et al (2007) Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography. J Chromatogr A 1148(1):86–91
Dominkovics Z, Dányádi L, Pukánszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos A 38(8):1893–1901
Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibres and performance of the resulting biocomposites: an overview. Compos Interf 8(5):31
Abdul Khalil HPS, Ismail H (2000) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20(1):65–75
Sain M et al (2005) Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos 24(2):121–130
Wang H, Sun X, Seib P (2002) Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J Appl Polym Sci 84(6):1257–1262
Wang H, Sun X, Seib P (2003) Properties of poly(lactic acid) blends with various starches as affected by physical aging. J Appl Polym Sci 90(13):3683–3689
Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in woof fibre-polypropylene composites. J Mater Sci 34:11
Bogoeva-Gaceva G et al (2007) Natural fiber eco-composites. Polym Compos 28(1):98–107
Yu L et al (2006) Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. J Appl Polym Sci 103:7
Yu L et al (2007) Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. J Appl Polym Sci 103(2):812–818
Oksman K, Lindberg H (1998) Influence of thermoplastic elastomers on adhesion in polyethylene-wood flour composites. J Appl Polym Sci 68(11):1845–1855
Wang Y et al (2003) Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym Eng Sci 43(4):933–945
Sombatsompop N, Yotinwattanakumtorn C, Thongpin C (2005) Influence of type and concentration of maleic anhydride grafted polypropylene and impact modifiers on mechanical properties of PP/wood sawdust composites. J Appl Polym Sci 97(2):475–484
Hristov VN, Lach R, Grellmann W (2004) Impact fracture behavior of modified polypropylene/wood fiber composites. Polym Test 23(5):581–589
Hristov VN et al (2004) Deformation mechanisms and mechanical properties of modified polypropylene/wood fiber composites. Polym Compos 25(5):521–526
Huda MS et al (2006) Wood-fibre reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:14
Bengtsson M, Oksman K (2006) The use of silane technology in crosslinking polyethylene/wood flour composites. Compos A 37(5):752–765
Acknowledgements
We would like to thank the members of the Microscopy and Microanalysis Facility at RMIT University for providing access to their SEM facilities for the work on the characterisation of fracture morphology, Mr. Colin MacRae for his assistance with the Electron probe analysis and Dr. Bill Tiganis for his assistance with obtaining the optical microscopy images.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petinakis, E., Yu, L., Edward, G. et al. Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. J Polym Environ 17, 83–94 (2009). https://doi.org/10.1007/s10924-009-0124-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-009-0124-0