Skip to main content
Log in

Poly(hydroxyalkanoate) Biosynthesis from Crude Alaskan Pollock (Theragra chalcogramma) Oil

Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the percent of the cell mass that is polymer) ranging from 6 to 53% of the cell dry weight (CDW). Two strains, P. oleovorans NRRL B-778 (P = 27%) and P. oleovorans NRRL B-14682 (P = 6%), synthesized poly(3-hydroxybutyrate) (PHB) with number average molecular weights (Mn) of 206,000 g/mol and 195,000 g/mol, respectively. Four strains, P. oleovorans NRRL B-14683 (P = 52%), P. resinovorans NRRL B-2649 (P = 53%), P. corrugata 388 (P = 43%), and P. putida KT2442 (P = 39%), synthesized medium-chain-length PHA (mcl-PHA) polymers with Mn values ranging from 84,000 g/mol to 153,000 g/mol. All mcl-PHA polymers were primarily composed of 3-hydroxyoctanoic acid (C8:0) and 3-hydroxydecanoic acid (C10:0) amounting to at least 75% of the total monomers present. Unsaturated monomers were also present in the mcl-PHA polymers at concentrations between 13% and 16%, providing loci for polymer derivatization and/or crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Crapo C, Bechtel P (2003) In: Bechtel PJ (ed) 2002 Conference proceedings. University of Alaska, pp 105–119

  2. Bower CK, Avena-Bustillos RJ, Olsen CW, McHugh TH, Bechtel PJ (2006) J Food Sci 71:M141–M145

    Article  CAS  Google Scholar 

  3. Avena-Bustillos RJ, Olsen CW, Olson DA, Chiou B, Yee E, Bechtel PJ, McHugh TH (2006) J Food Sci 71:E202–E207

    Article  CAS  Google Scholar 

  4. Steinbuchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  5. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Appl Environ Microbiol 56:3354–3359

    CAS  Google Scholar 

  6. Huijberts GNM, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536–544

    CAS  Google Scholar 

  7. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Appl Environ Microbiol 54:1977–1982

    CAS  Google Scholar 

  8. Eggink G, van der Wal H, Huijberts GNM, de Waard P (1993) Ind Crops Prod 1:157–163

    Article  Google Scholar 

  9. Tan IKP, Sudesh Kumar K, Theanmalar M, Gan SN, Gordon BIII (1997) Appl Microbiol Biotechnol 47:207–211

    Article  CAS  Google Scholar 

  10. Casini E, de Rijk TC, de Waard P, Eggink G (1997) J Environ Polym Degrad 5:153–158

    CAS  Google Scholar 

  11. Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Macromolecules 27:878–880

    Article  CAS  Google Scholar 

  12. Ashby RD, Foglia TA (1998) Appl Microbiol Biotechnol 49:431–437

    Article  CAS  Google Scholar 

  13. Solaiman DKY, Ashby RD, Foglia TA (2002) Curr Microbiol 44:189–195

    Article  CAS  Google Scholar 

  14. Braunegg G, Bona R, Koller M (2004) Polym-Plastics Technol Engineer 43:1779–1793

    Article  CAS  Google Scholar 

  15. Ashby RD, Solaiman DKY, Foglia TA (2004) J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  16. Solaiman DKY, Ashby RD, Hotchkiss AT Jr, Foglia TA (2006) Biotechnol Lett 28:157–162

    Article  CAS  Google Scholar 

  17. Zinn M, Witholt B, Egli T (2001) Adv Drug Deliv Rev 53:5–21

    Article  CAS  Google Scholar 

  18. Lenz RW, Marchessault RH (2005) Biomacromolecules 6:1–8

    Article  CAS  Google Scholar 

  19. Ashby RD, Foglia TA, Solaiman DKY, Liu C-K, Nuñez A, Eggink G (2000) Int J Biol Macromol 27:355–361

    Article  CAS  Google Scholar 

  20. Ashby RD, Solaiman DKY, Foglia TA (2002) J Ind Microbiol Biotechnol 28:147–153

    Article  CAS  Google Scholar 

  21. Ashby RD, Solaiman DKY, Foglia TA (2005) Biomacromolecules 6:2106–2112

    Article  CAS  Google Scholar 

  22. Ashby RD, Solaiman DKY, Foglia TA, Liu C-K (2001) Biomacromolecules 2:211–216

    Article  CAS  Google Scholar 

  23. Ashby RD, Solaiman DKY, Foglia TA (2002) Appl Microbiol Biotechnol 60:154–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Marshall Reed and Kirby Jones for their technical assistance throughout the study and Kevin Holtman of the Agricultural Research Service, Western Regional Research Center for performing the GPC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Ashby.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashby, R.D., Solaiman, D.K.Y. Poly(hydroxyalkanoate) Biosynthesis from Crude Alaskan Pollock (Theragra chalcogramma) Oil. J Polym Environ 16, 221–229 (2008). https://doi.org/10.1007/s10924-008-0108-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0108-5

Keywords

Navigation