Skip to main content
Log in

Formed-in-place Polyelectrolyte Complex Membranes for Atrazine Recovery from Aqueous Media

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A permeable system composed of a polyelectrolyte complex (PEC) membrane formed by alternated deposition of chitosan (CHI) and carboxymethylcellulose (CMC) onto a porous solid substrate was investigated. The films, with thicknesses not superior to 20 nm, were obtained by a self-assembly technique, i.e., by direct dipping of chemically cleaned porous glass membranes, into concentrated polymeric precursor solutions. The resulting depositions have irregular structures and reduce the initial membrane permeability, especially for higher flux velocities. Concerning filtration tests for herbicide removal in aqueous medium, the chitosan deposition attained better results. A tentative model of binding involving hydrogen bonding and/or charge-transfer to nonspecific sites available dynamically as a function of the conformational estate of the deposited polymers is proposed for polysaccharide-herbicide interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hallberg GR (1988) Amer J Altern Agric 2:3

    Article  Google Scholar 

  2. Wu TL, Lambert L, Hastings D, Banning D (1980) Bull Environ Contam Toxicol 24:411

    Article  CAS  Google Scholar 

  3. USEPA (1976) Quality criteria for water. US Gov Print Office, Washington, DC

    Google Scholar 

  4. Wauchope RD (1992) Rev Environ Contam Toxicol 123:1

    CAS  Google Scholar 

  5. Ritter WF, Scarborough RW, Chirnside AEM (1994) Soil J Irrig Drain Engrg 120:634

    Article  Google Scholar 

  6. Renner R (2003) Environ Sci Technol 37:46A

    Article  CAS  Google Scholar 

  7. Phelps TJ, Niedzielsji JJ, Schram R M, Herbes SE, White DC (1990) Appl Environ Microbiol 56:1702

    CAS  Google Scholar 

  8. Weber-Shirk M, Dick RI (1997) J Am Water Works Assoc 89:87

    CAS  Google Scholar 

  9. Bai R, Tien C (2000) Colloids Surf A Physicochem Eng Asp 165:95

    Article  Google Scholar 

  10. Etemadi O, Petrisor IG, Kim D, Wan M-W, Yen TF (2003) Soil Sediment Contam 12:647

    Article  CAS  Google Scholar 

  11. Assis OBG, Claro LC (2003) Electron J Biotechnol 6:14

    Article  Google Scholar 

  12. Weetall HH (1993) Appl Biochem Biotechnol 41:157

    Article  CAS  Google Scholar 

  13. Wang X, Spencer G (1998) J Appl Polym Sci 67:513

    Article  CAS  Google Scholar 

  14. Groves JT, Boxer SG (2002) Acc Chem Res 35:149

    Article  CAS  Google Scholar 

  15. Sackmann E (1996) Science 271:43

    Article  CAS  Google Scholar 

  16. Deisingh AK, Thompson M (2004) Can J Microbiol 50:69

    Article  CAS  Google Scholar 

  17. Jednačk-Bisĉan J, Pravdiĉ V (1982) J Colloid Interface Sci 90:44

    Article  Google Scholar 

  18. Kern W (1993) In: Kern W (ed) Handbook of semiconductor wafer cleaning technology. Noyes Publications, New Jersey, pp 03–57

    Google Scholar 

  19. Assis OBG, Claro LC (1999) J Non-Cryst Solids 247:237

    Article  CAS  Google Scholar 

  20. Chartier P (1997) Verre 3:5

    CAS  Google Scholar 

  21. Biesheuvel PM, Veen M, van der Norde W (2005) J Phys Chem B 109:4172

    Article  CAS  Google Scholar 

  22. McEldowney S, Fletcher M (1987) Arch Microbiol 148:57

    Article  CAS  Google Scholar 

  23. Mayers D (1991) Surfaces, Interfaces and colloids. VCH Publishers Inc., NY, 432 p

    Google Scholar 

  24. Kumar MNVR (2000) Reactive Funct Polym 46:1

    Article  CAS  Google Scholar 

  25. Adb-El-Rehim HA, Hegazy-El-Sayed A, Diaa DA(2006) J Macromol Sci Pure Appl Chem 43:101

    Article  CAS  Google Scholar 

  26. Zeronian SH (1985) Cellulose chemistry and it´s applications. Ellis Horwood Limited, New York, pp 159–174

    Google Scholar 

  27. Assis OBG, Vieira DC, Ferrante M (2001) Glass Technol 42:101

    CAS  Google Scholar 

  28. Kaneno J, Kohama R, Miyazaki M, Uehara M, Kanno K, Fujii M, Shimizu H, Maeda H (2003) New J Chem 27:1765

    CAS  Google Scholar 

  29. Innocentini MDM, Pardo ARF, Pandolfelli VC (2000) J Am Ceram Soc 83:220

    Article  CAS  Google Scholar 

  30. Kislenko VN (2006) In: Somasundaran S (Ed) Encyclopedia of surface and colloid science. CRC Press, Boca Raton, pp 4766–4779

    Google Scholar 

  31. Joanny JF, Castelnovo M, Netz R (2000) J Phys Condens Matter 12:A1

    Google Scholar 

  32. Priel Z, Silberberg A (2003) J Polym Sci Polym Phys Ed 16:1917

    Google Scholar 

  33. Assis OBG, Bernades-Filho R, Vieira DC, Campana-Filho SP (2002) Int J Polym Mater 51:633

    Article  CAS  Google Scholar 

  34. Guin JA (1972) Indust Eng Chem Fundam 11:345

    Article  CAS  Google Scholar 

  35. Hampton JHD, Savage SB, Drew RAL (1993) Chem Eng Sci 48:1601

    Article  CAS  Google Scholar 

  36. Tsuchida E, Abe K (1982) Adv Polym Sci 45:1

    Article  Google Scholar 

  37. Navarro RR, Wada S, Tatsumi K (2005) J Hazard Mater 123:203

    Article  CAS  Google Scholar 

  38. Larson RA, Weber EJ (1994) Reaction mechanisms in environmental organic chemistry. CRC Press Inc, Boca Raton, pp 103–167

    Google Scholar 

Download references

Acknowledgements

This research had financial support from FAPESP, CNPq and Embrapa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odilio B. G. Assis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assis, O.B.G., de Britto, D. Formed-in-place Polyelectrolyte Complex Membranes for Atrazine Recovery from Aqueous Media. J Polym Environ 16, 192–197 (2008). https://doi.org/10.1007/s10924-008-0101-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0101-z

Keywords

Navigation