Journal of Polymers and the Environment

, Volume 15, Issue 2, pp 125–150 | Cite as

Biodegradation of Agricultural Plastic Films: A Critical Review

  • Ioanna Kyrikou
  • Demetres BriassoulisEmail author
Original Paper


The growing use of plastics in agriculture has enabled farmers to increase their crop production. One major drawback of most polymers used in agriculture is the problem with their disposal, following their useful life-time. Non-degradable polymers, being resistive to degradation (depending on the polymer, additives, conditions etc) tend to accumulate as plastic waste, creating a serious problem of plastic waste management. In cases such plastic waste ends-up in landfills or it is buried in soil, questions are raised about their possible effects on the environment, whether they biodegrade at all, and if they do, what is the rate of (bio?)degradation and what effect the products of (bio?)degradation have on the environment, including the effects of the additives used. Possible degradation of agricultural plastic waste should not result in contamination of the soil and pollution of the environment (including aesthetic pollution or problems with the agricultural products safety). Ideally, a degradable polymer should be fully biodegradable leaving no harmful substances in the environment. Most experts and acceptable standards define a fully biodegradable polymer as a polymer that is completely converted by microorganisms to carbon dioxide, water, mineral and biomass, with no negative environmental impact or ecotoxicity. However, part of the ongoing debate concerns the question of what is an acceptable period of time for the biodegradation to occur and how this is measured. Many polymers that are claimed to be ‘biodegradable’ are in fact ‘bioerodable’, ‘hydrobiodegradable’, ‘photodegradable’, controlled degradable or just partially biodegradable. This review paper attempts to delineate the definition of degradability of polymers used in agriculture. Emphasis is placed on the controversial issues regarding biodegradability of some of these polymers.


Degradation Biodegradation Mulching films Agriculture Polymers 


  1. 1.
    Chandra R, Rustgi R (1998) Program Polym Sci 23:1273CrossRefGoogle Scholar
  2. 2.
    Chiellini E, Corti A, Swift G (2003) Polym Degrad Stabil 81:341CrossRefGoogle Scholar
  3. 3.
    www.americalplasticscouncil.orgGoogle Scholar
  4. 4.
    Bohlmann G, Toki G (2004) Chemical economics handbook, SRI International ed.Google Scholar
  5. 5.
    Vert M, Dos Santos I, Ponsart St, Alauzet N, Morgat J-L, Coudane J, Garreau H (2002) Polym Int 51:840CrossRefGoogle Scholar
  6. 6.
    www.asmt.orgGoogle Scholar
  7. 7.
    www.ibaw.orgGoogle Scholar
  8. 8.
    Albertsson AC, Barnstedt C, Karlsson S (1995) J Appl Polym Sci 51:1097CrossRefGoogle Scholar
  9. 9.
    www.plasticulture.comGoogle Scholar
  10. 10.
    Espi E, Salmeron A, Fontecha A, Garcia Y, Real AI (2006) J Plast Film Sheet 22:85CrossRefGoogle Scholar
  11. 11.
    Jouet JP (2001) Plasticulture 120:46Google Scholar
  12. 12.
    Dilara PA, Briassoulis D (2000) J Agr Eng Res 76:309CrossRefGoogle Scholar
  13. 13.
    Briassoulis D (2005) Polym Degrad Stabil 88:489CrossRefGoogle Scholar
  14. 14.
    Griffin GJL (1994) Chemistry and technology of biodegradable polymers. Blackie Academic Professional, Chapman & HallGoogle Scholar
  15. 15.
    Scott G (1975) Polym Age 6:54Google Scholar
  16. 16.
    Scott G, Wiles DM (2001) Biomacromolecules 2(3):615CrossRefGoogle Scholar
  17. 17.
    Scott G (2000) Polym Degrad Stabil 68:1CrossRefGoogle Scholar
  18. 18.
    Stevens ES (2002) Biocycle 43(12):42Google Scholar
  19. 19.
    Jakubowicz I (2003) Polym Degrad Stabil 80:39CrossRefGoogle Scholar
  20. 20.
    Karlsson S, Hakkarainen M, Albertsson A-C (1997) Macromolecules 30:7721CrossRefGoogle Scholar
  21. 21.
    Wackett L, Hershberger DC (2001) Biocatalysis and biodegradation. Microbial transformation of organic compounds. ASM Press, Washington DCGoogle Scholar
  22. 22.
    Barak L, Coquest Y, Halbach TR, Molina JAE (1991) J Environ Qual 20:173CrossRefGoogle Scholar
  23. 23.
    Schmitt J, Flemming H-C (1998) Int Biodeter Biodegr 41:1CrossRefGoogle Scholar
  24. 24.
    Albertsson A-C, Karlsson S (1988) J Appl Polymer Sci 35:1289CrossRefGoogle Scholar
  25. 25.
    Albertsson A-C, Karlsson S (1990) Prog Polym Sci 15:177CrossRefGoogle Scholar
  26. 26.
    Albertsson A-C, Barenstedt C, Karlsson S, Lindberg T (1995) Polymer 36:3075CrossRefGoogle Scholar
  27. 27.
    Billingham NC, Bonora M, De Corte D (2004) Environmentally degradable plastics based on oxodegradation of conventional polyolefins. Plastics Solutions Canada Inc.Google Scholar
  28. 28.
    Liu M, Horrocks AR (2002) Polym Degrad Stabil 75:485CrossRefGoogle Scholar
  29. 29.
    Ohtake Y, Kobayashi T, Asabe H, Murakami N (1998) Polym Degrad Stabil 60:79CrossRefGoogle Scholar
  30. 30.
    Ohtake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1998) J Appl Polym Sci 70:1643CrossRefGoogle Scholar
  31. 31.
    Orhan Y, Hrenovic J, Buyukgungor H (2004) Acta Chim Slov 51:578Google Scholar
  32. 32.
    Stevens ES (2002) Green plastics: an introduction to the new science of biodegradable plastics. Princeton University PressGoogle Scholar
  33. 33.
    Broska R, Rychly J (2001) Polym Degrad Stabil 72:271CrossRefGoogle Scholar
  34. 34.
    Karlsson S, Albertsson AC (1998) Polym Eng Sci 38(8):1251CrossRefGoogle Scholar
  35. 35.
    Goldstein N, Block D (2000) Biocycle J Compost Organ Recycl 41(8):40Google Scholar
  36. 36.
    Martin A (1994) Biodegradation and bioremediation. Academic Press IncGoogle Scholar
  37. 37.
    Narayan R (1994) Proceedings: Third International Scientific Workshop on Biodegradable Plastics and Polymers; Osaka, Japan, Nov 9–11, 1993, Impact of Governmental Policies, Regulations, and Standards Activities on an Emerging Biodegradable Plastics Industry. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier, New York, pp 261Google Scholar
  38. 38.
    Demicheli M (1996) Biodegradable plastics from renewable sources. IPTS Report, 10Google Scholar
  39. 39.
    Guides for the use of environmental marketing claims, U.S. Federal Trade Commission, Washington D.C., July, 1992Google Scholar
  40. 40.
    Khabbaz F, Albertsson A-C, Karlsson S (1999) Polym Degrad Stabil 63:127CrossRefGoogle Scholar
  41. 41.
    Kitch D (2001) Biocycle J Compost Organ Recycl 42(2):74Google Scholar
  42. 42.
    Agamuthu P, Putri Nadzrul Faizura (2005) Waste Manage Res 23:95Google Scholar
  43. 43.
    Albertsson A-C (1980) Eur Polym J 16:623CrossRefGoogle Scholar
  44. 44.
    Narayan R (1992) ACS Symp Ser 476Google Scholar
  45. 45.
    Rabek J (1996) Photodegradation of polymers – physical characteristics and application. Springer, GermanyGoogle Scholar
  46. 46.
    Pospısil J, Pilar J, Billingham NC, Marek A, Horak Z, Nespurek S (2006) Polym Degrad Stabil 91:417CrossRefGoogle Scholar
  47. 47.
    Biodegradable Plastics (2002) – Developments and Environmental Impacts, Nolan-ITU Pty Ltd, Prepared in association with ExcelPlas Australia, October, 2002Google Scholar
  48. 48.
    Biron M (2005) Collateral effects of additives, Part 2 – Unexpected and surprising effects of specific additives, SpecialChemGoogle Scholar
  49. 49.
    Biron M (2005) The additives for thermoplastics: a review III – Specific property enhancement, SpecialChemGoogle Scholar
  50. 50.
    Erlandsson B, Karlsson S, Albertsson A-C (1997) Polym Degrad Stabil 56:237CrossRefGoogle Scholar
  51. 51.
    Szaraz L, Beczner J, Kayser G (2003) Polym Degrad Stabil 81:477CrossRefGoogle Scholar
  52. 52.
    Matsunaga M, Whitney PJ (2000) Polym Degrad Stabil 70:325CrossRefGoogle Scholar
  53. 53.
    Narayan R (2000) Proceedings of the ICS-UNIDO International Workshop, Environmental Degradable Plastic: Industrial Development and Application. Biodegradable plastic for sustainable technology development & evolving worldwide standards. Seoul, Korea, pp. 24–38. Korean Institute of Science and Technology (KIST), Chongryang, SeoulGoogle Scholar
  54. 54.
    Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Polym Degrad Stabil 91:2819CrossRefGoogle Scholar
  55. 55.
    Keller D, Environmentally Degradable Plastics (2006) Plastic Shipping Container Institute presentation, Lyondell IncGoogle Scholar
  56. 56.
    www.ics.trieste.itGoogle Scholar
  57. 57.
    Krisada D (2006) Workshop on Development of Environmentally Degradable Plastics From Renewable Resources in Thailand. Inno BioPlast 2006, Bangkok, ThailandGoogle Scholar
  58. 58.
    Baciu R, Swift G (2006) Synthetic polymers that environmentally degrade by a combination of abiotic and biotic processes, BEPS/SPI, Chicago, June 2006Google Scholar
  59. 59.
    Weiland M, Daro A, David C (1995) Polym Degrad Stabil 48:275CrossRefGoogle Scholar
  60. 60.
    Environmental and Plastic Industry Council (2000) Biodegradable Polymers, Technical ReviewGoogle Scholar
  61. 61.
    Bonhomme S, Cuer A, Delort A-M, Lemaire J, Sancelme M, Scott G (2003) Polym Degrad Stabil 81:441CrossRefGoogle Scholar
  62. 62.
    Calmon-Decriaud A, Bellon-Maurel V, Silvestre F (1998) Adv Polym Sci 135:207CrossRefGoogle Scholar
  63. 63.
    Fritz J, Link U, Braun R (2001) Starke/Starch 53(3–4):105Google Scholar
  64. 64.
    Hoffmann J et al (2003) Polym Degrad Stabil 79:511CrossRefGoogle Scholar
  65. 65.
    Nakamura EM, Cordi L, Almeida GSG, Duran N, Mei LHI (2005) J Mater Process Technol 162–163:236CrossRefGoogle Scholar
  66. 66.
    Gomes ME, Reis RL (2004) Int Mater Rev 49(5):261CrossRefGoogle Scholar
  67. 67.
    Arnaud R, Dabin P, Lemaire J, Al-Malaika S, Chohan S, Coker M (1994) Polym Degrad Stabil 46(2):211CrossRefGoogle Scholar
  68. 68.
    Garthe JW, Kowal PD (2002) The chemical composition of degradable plastics. Agricultural and Biological Engineering, PENNSTATE University.Google Scholar
  69. 69.
    Briassoulis D (2004) J Polym Environ 12(2):65CrossRefGoogle Scholar
  70. 70.
    Bastioli C (ed) (2005) Starch-based technology – Handbook of biodegradable polymers. Rapra TechnologyGoogle Scholar
  71. 71.
    Mohanty K, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277(1):1CrossRefGoogle Scholar
  72. 72.
    Richard RA, Kalra B (2002) Science 297(5582):803CrossRefGoogle Scholar
  73. 73.
    Shogren R, Biodegradable Mulch Films, USDA ARS NCAUR Technologies for Transfer, National Center for Agricultural Utilization Research ( Scholar
  74. 74.
    Enivronmental product declaration (EPD) Mater-Bi PE type: Biodegradable plastic pellet for foams, Novamont Inc.Google Scholar
  75. 75.
    Scarascia-Mugnozza G, Schettini E, Vox G (2004) Biosyst Eng 87(4):479CrossRefGoogle Scholar
  76. 76.
    Tocchetto RS, Benson RS, Dever M (2001) J Polym Environ 9(2):57CrossRefGoogle Scholar
  77. 77.
    Otey FH (1976) Polym Plast Technol Eng 7:221CrossRefGoogle Scholar
  78. 78.
    Westhoff RP, Otey RH, Mehltretter CL, Russell CR (1974) Ind Eng Chem Prod Res Dev 13(2):123CrossRefGoogle Scholar
  79. 79.
    Fernando WC, Suyama K, Itoh K, Tanaka H, Yamamoto H (2002) Soil Sci Plant Nutr 48(5):701Google Scholar
  80. 80.
    Patel M (2001) Review of life cycle assessments for bioplastic. Department of Science, Technology and Society, Utrecht University, NetherlandsGoogle Scholar
  81. 81.
    Kurdikar D, Fournet L, Slater S, Paster M, Gruys K, Gerngross T, Coulon R (2001) J Industr Ecol 4(3):107CrossRefGoogle Scholar
  82. 82.
    Halley P, Rutgers R, Coombs S, Christie G, Lonergan G (2001) Starch-Starke 53(8):362CrossRefGoogle Scholar
  83. 83.
    Gerngross T (1999) Nat Biotechnol 17:541CrossRefGoogle Scholar
  84. 84. Scholar
  85. 85.
    http://yosemite.epa.govGoogle Scholar
  86. 86.
    Leonardo Da Vinci Programme (2000) Environmentally degradable plastics, CONTRACT No: I/98/2/05261/PI/II.1.1.b/CONT, Final ReportGoogle Scholar
  87. 87.
    El-Rehim Abd, El-Sayed HA, Hegazy A, Ali AM, Rabie AM (2004) J Photochem Photobiol A Chem 163:547CrossRefGoogle Scholar
  88. 88.
    www.cemagref.frGoogle Scholar
  89. 89.
    Hurd CD, Blunck FH (1983) J Am Chem Soc 60:2419CrossRefGoogle Scholar
  90. 90.
    Martelé Y, van Speybroeck V, Waroquier M, Schach E (2002) e-Polymers 049 http://www.e-polymers.orgGoogle Scholar
  91. 91.
    Feuilloley P, Cesar Guy G, Benguigui L, Grohens Y, Pillin I, Bewa H, Lefaux S, Mounia J (2005) J Polym Environ 13(4):349CrossRefGoogle Scholar
  92. 92.
    www.cenorm.beGoogle Scholar
  93. 93.
    Blanco A (2002) Plast Eng 58(10):6Google Scholar
  94. 94.
    Leaversuch R (2002) Plast Technol 48(9):66Google Scholar
  95. 95.
    Albertsson A-C, Karlsson S (1987) Polym Degrad Stabil 18:73CrossRefGoogle Scholar
  96. 96.
    Hadad D, Geresh S, Sivan A (2005) J Appl Microbiol 98:1093CrossRefGoogle Scholar
  97. 97.
    Ohtake Y, Kobayashi T, Asabe H, Murakami N (1995) J Appl Polym Sci 56:1789CrossRefGoogle Scholar
  98. 98.
    Stapleton RD, Savage DC, Sayler GS, Stacey G (1998) Appl Environ Microbiol 64(11):4180Google Scholar
  99. 99.
    Gulmine JV, Janissel PR, Heise HM, Akcelrud L (2003) Polym Degrad Stabil 79:385CrossRefGoogle Scholar
  100. 100.
    Morancho JM, Ramis X, Fernandez X, Cadenato A, Salla JM, Valles A, Contat L, Ribes A (2006) Polym Degrad Stabil 91:44CrossRefGoogle Scholar
  101. 101.
    Technical Report (2003) Additives to make conventional polymers degradable, SpecialChemGoogle Scholar
  102. 102.
    Gorghium LM, Jipa S, Zaharescu T, Setnescu R, Mihalcea I (2004) Polym Degrad Stabil 84:7CrossRefGoogle Scholar
  103. 103.
    Orhan Y, Buyukgungor H (2000) Int Biodeter Biodegr 45:49CrossRefGoogle Scholar
  104. 104.
    Orhan Y, Hrenovic J, Buyukgungor H (2004) Acta Chim Slov 51:578Google Scholar
  105. 105.
    Chiellini E, Corti A, D’Antone S, Baciu R (2006) Polym Degrad Stabil 91:2739CrossRefGoogle Scholar
  106. 106.
    Pandey JK, Singh RP (2001) Biomacromolecules 2:880CrossRefGoogle Scholar
  107. 107.
    Manzur A, Limon-Gonzalez M, Favela-Torres E (2004) J Appl Polym Sci 92:265CrossRefGoogle Scholar
  108. 108. Scholar
  109. 109.
    Wiles D, Scott G (2006) Polym Degrad Stabil 91:1581CrossRefGoogle Scholar
  110. 110.
    Technical guides and websites CIBA, EPG, VTT, TISTRGoogle Scholar
  111. 111.
    Weng Yunxuan, The status of biodegradable plastics in China, Scholar
  112. 112.
    www.iso.orgGoogle Scholar
  113. 113.
    www.nist.govGoogle Scholar
  114. 114.
    www2.din.deGoogle Scholar
  115. 115.
    www.orca.beGoogle Scholar
  116. 116.
    www.afnor.frGoogle Scholar
  117. 117.
    www.aib-vincotte.comGoogle Scholar
  118. 118.
    Briassoulis D (2005) Polym Degrad Stabil 88:489CrossRefGoogle Scholar
  119. 119.
    Gourdon R (2002) Aide A La Definition Des Dechets Dits Biodegradables, Fermentescibles, Methanisables, Compostables, Rapport Final, Re.Co.R.D. Etude No. 00-0118/1a, FévrierGoogle Scholar
  120. 120.
    Harold S (1993) Biodegradability: review of the current situation, Lubrizol CorporationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Agricultural EngineeringAgricultural University of AthensAthensGreece

Personalised recommendations