Skip to main content

Lignin-based Carbon Fibers: Effect of Synthetic Polymer Blending on Fiber Properties

Carbon fibers have been produced from hardwood lignin/synthetic polymer blend fibers. Hardwood kraft lignin was thermally blended with two recyclable polymers, poly(ethylene terephthalate) (PET) and polypropylene (PP). Both systems were easily spun into fibers. A thermostabilization step was utilized prior to carbonization to prevent fusion of individual fibers. For the lignin-based carbon fibers, careful control of heating rate was required. However, PET–lignin blend fibers can be thermostabilized under higher heating rates than the corresponding homofibers. Carbon fiber yield decreased with increasing incorporation of synthetic plastic. However, carbon fiber yield obtained for a 25% plastic blend fiber was still higher than that generally reported for petroleum pitch. Blend composition also affected surface morphology of the carbon fibers. Immiscible lignin–PP fibers resulted in a hollow and/or porous carbon fiber; whereas carbon fiber produced from miscible lignin–PET fibers have a smooth surface. Synthetic polymer blending also affected the mechanical properties of the fibers, especially MOE; lignin-based carbon fiber properties improved upon blending with PET.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. H. Imam R. V. Greene B. R. Zaidi (1999) Biopolymers: Utilizing Nature’s Advanced Materials American Chemical Society Washington, DC

    Google Scholar 

  2. 2.

    W. G. Glasser R. A. Northey T. P. Schultz (2000) Lignin: Historical, Biological, and Materials Perspectives American Chemical Society Washington, DC

    Google Scholar 

  3. 3.

    W. G. Glasser S. Sarkanen (1989) Lignin: Properties and Materials American Chemical Society Washington,DC

    Google Scholar 

  4. 4.

    J. F. Kadla S. Kubo (2003) Macromolecules 36 IssueID20 7803–7811 Occurrence Handle10.1021/ma0348371 Occurrence Handle1:CAS:528:DC%2BD3sXnt1Klt7s%3D

    Article  CAS  Google Scholar 

  5. 5.

    J. F. Kadla S. Kubo R. A. Venditti R. D. Gilbert A. L. Compere W. Griffith (2002) Carbon 40 IssueID15 2913–2920 Occurrence Handle10.1016/S0008-6223(02)00248-8 Occurrence Handle1:CAS:528:DC%2BD38Xot1WmtrY%3D

    Article  CAS  Google Scholar 

  6. 6.

    J. F. Kadla S. Kubo R. A. Venditti R. D. Gilbert (2002) J. App. Polym. Sci. 85 IssueID6 1353–1355 Occurrence Handle10.1002/app.10640 Occurrence Handle1:CAS:528:DC%2BD38Xks12gu7o%3D

    Article  CAS  Google Scholar 

  7. 7.

    S. Kubo N. Ishikawa Y. Uraki Y. Sano (1997) Mokuzai Gakkaishi 43 IssueID8 655–662 Occurrence Handle1:CAS:528:DyaK2sXmtFans7g%3D

    CAS  Google Scholar 

  8. 8.

    Y. Uraki S. Kubo N. Nigo Y. Sano T. Sasaya (1995) Holzforschung 49 IssueID4 343–350 Occurrence Handle1:CAS:528:DyaK2MXnsVSgs7w%3D

    CAS  Google Scholar 

  9. 9.

    Y. Li S. Sarkanen (2002) Macromolecules 35 IssueID26 9707–9715 Occurrence Handle10.1021/ma021124u Occurrence Handle1:CAS:528:DC%2BD38XovVSms7o%3D

    Article  CAS  Google Scholar 

  10. 10.

    T. Matsuura P. Blais S Sourirajan (1976) J. Appl. Polym. Sci. 20 1515–1531 Occurrence Handle10.1002/app.1976.070200610 Occurrence Handle1:CAS:528:DyaE28XktlertL4%3D

    Article  CAS  Google Scholar 

  11. 11.

    C. M. Hansen A. Björkman (1998) Holzforschung 52 335–344 Occurrence Handle1:CAS:528:DyaK1cXlsVGqtL4%3D

    CAS  Google Scholar 

  12. 12.

    J. F. Kadla S. Kubo R. D. Gilbert R. A. Venditti A. Compere W. Griffith (2002) Carbon 40 IssueID15 2913–2920 Occurrence Handle10.1016/S0008-6223(02)00248-8 Occurrence Handle1:CAS:528:DC%2BD38Xot1WmtrY%3D

    Article  CAS  Google Scholar 

  13. 13.

    S. Kubo, R. D. Gilbert and J. F. Kadla (2004) in Natural Fibers, Biopolymers and their Biocomposites, Mohanty A.K., Misra M.,L. T. Drzal (Eds). CRC Press, New York.

  14. 14.

    J. F. Kadla S. Kubo (2004) Composites, Part A: Applied Science and Manufacturing 35 IssueID3 395–400

    Google Scholar 

  15. 15.

    S. Kubo Y. Uraki Y. Sano (1998) Carbon 36 IssueID7–8 1119–1124 Occurrence Handle10.1016/S0008-6223(98)00086-4 Occurrence Handle1:CAS:528:DyaK1cXkslKgtLw%3D

    Article  CAS  Google Scholar 

  16. 16.

    J. F. Kadla, S. Kubo, R. D. Gilbert and R. A. Venditti (2002) in Chemical Modification, Properties, and Usage of Lignin (T. Q. Hu Ed.). Kluwer Academic/Plenum Publishers, New York, pp. 121–138.

  17. 17.

    J. Braun K. Holtman J. F. Kadla (2004) Carbon 43 383–392

    Google Scholar 

  18. 18.

    K. Sudo K. Shimizu N. Nakashima A. Yokoyama (1993) J. Appl. Polym. Sci. 48 IssueID8 1485–1491 Occurrence Handle10.1002/app.1993.070480817 Occurrence Handle1:CAS:528:DyaK3sXisFKnur4%3D

    Article  CAS  Google Scholar 

  19. 19.

    S. Otani, Y. Fukuoka, B. Igarashi and K. Sasaki (1969) Method for producing carbonized lignin Fiber. 1969: U.S. Patent 3,461082

  20. 20.

    J.-B. Donnet (1998) Carbon Fibers Marcel Dekker New York

    Google Scholar 

  21. 21.

    S.Y. Lin C.W. Dence (1992) Methods in Lignin Chemistry Springer-Verlag New York

    Google Scholar 

  22. 22.

    T. Tagawa T. Miyata (1997) Mater. Sci. Eng., A. A238 IssueID2 336–342

    Google Scholar 

  23. 23.

    S. Ozbek D. H. Isaac (1992) Am. Soc. Mech. Eng. 35 75–86 Occurrence Handle1:CAS:528:DyaK2MXnsFSgsA%3D%3D

    CAS  Google Scholar 

  24. 24.

    K. Tai N. Shindo (1993) Sen-i Gakkaishi 49 IssueID5 177–182

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. F. Kadla.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kubo, S., Kadla, J.F. Lignin-based Carbon Fibers: Effect of Synthetic Polymer Blending on Fiber Properties. J Polym Environ 13, 97–105 (2005). https://doi.org/10.1007/s10924-005-2941-0

Download citation

Keywords

  • Carbon fibers
  • stabilization
  • carbonization
  • mechanical properties
  • chemical structure