Skip to main content
Log in

Mobile-Aware Service Function Chain Intelligent Seamless Migration in Multi-access Edge Computing

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

With the improvement of service delay and quality requirements for new applications such as unmanned driving, internet of vehicles, and virtual reality, the deployment of network services is gradually moving from the cloud to the edge. This transition has led to the emergence of multi-access edge computing (MEC) architectures such as distributed micro data center and fog computing. In the MEC environment, network infrastructure is distributed around users, allowing them to access the network nearby and move between different service coverage locations. However, the high mobility of users can significantly affect service orchestration and quality, and even cause service interruption. How to respond to user mobility, dynamically migrate user services, and provide users with a continuous and seamless service experience has become a huge challenge. This paper studies the dynamic migration of service function chain (SFC) caused by user mobility in MEC environments. First, we model the SFC dynamic migration problem in mobile scenarios as an integer programming problem with the goal of optimizing service delay, migration success rate, and migration time. Based on the above model, we propose a deep reinforcement learning-driven SFC adaptive dynamic migration optimization algorithm (DRL-ADMO). DRL-ADMO can perceive the underlying network resources and SFC migration requests, intelligently decide on the migration paths of multiple network functions, and adaptively allocate bandwidth, achieving parallel and seamless SFC migration. Performance evaluation results show that compared with existing algorithms, the proposed algorithm can optimize 7% service delay and 20% migration success rate at the cost of sacrificing a small amount of migration time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. ETSI.: Network Functions Virtualisation (NFV); Architectural Framework, ETSI GS NFV 002 (V1.2.1) (2014)

  2. Liu, L., Guo, S., Liu, G., et al.: Joint dynamical VNF placement and SFC routing in NFV-enabled SDNs. IEEE Trans. Netw. Serv. Manag. 18(4), 4263–4276 (2021)

    Article  Google Scholar 

  3. Halpern, J., Pignataro, C.: Service function chaining (sfc) architecture. In: RFC 7665 (2015)

  4. Hantouti, H., Benamar, N., Taleb, T.: Service function chaining in 5G and beyond networks: challenges and open research issues. IEEE Netw. 34(4), 320–327 (2020)

    Article  Google Scholar 

  5. Kaur, K., Mangat, V., Kumar, K.: A comprehensive survey of service function chain provisioning approaches in SDN and NFV architecture. Comput. Sci. Rev. 38, 100298 (2020)

    Article  Google Scholar 

  6. Chen, Y.T., Liao, W.: Mobility-aware service function chaining in 5g wireless networks with mobile edge computing. In: ICC 2019–2019 IEEE International Conference on Communications (ICC) , pp. 1–6. IEEE (2019)

  7. Taleb, T., Ksentini, A., Frangoudis, P.A.: Follow-me cloud: when cloud services follow mobile users. IEEE Trans. Cloud Comput. 7(2), 369–382 (2016)

    Article  Google Scholar 

  8. Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., et al.: Application component placement in NFV-based hybrid cloud/fog systems with mobile fog nodes. IEEE J. Sel. Areas Commun. 37(5), 1130–1143 (2019)

    Article  Google Scholar 

  9. Sonkoly, B., Czentye, J., Szalay, M., et al.: Survey on placement methods in the edge and beyond. IEEE Commun. Surv. Tutor. 23(4), 2590–2629 (2021)

    Article  Google Scholar 

  10. Zhang, F., Liu, G., Fu, X., et al.: A survey on virtual machine migration: challenges, techniques, and open issues. IEEE Commun. Surv. Tutor. 20(2), 1206–1243 (2018)

    Article  Google Scholar 

  11. Zhao, D., Sun, G., Liao, D., et al.: Mobile-aware service function chain migration in cloud–fog computing. Future Gener. Comput. Syst. 96, 591–604 (2019)

    Article  Google Scholar 

  12. Hu, H., Yang, C., Xu, L., et al.: Path load adaptive migration for routing and bandwidth allocation in mobile-aware service function chain. Electronics 11(1), 57 (2021)

    Article  Google Scholar 

  13. Pei, J., Hong, P., Pan, M., et al.: Optimal VNF placement via deep reinforcement learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun. 38(2), 263–278 (2019)

    Article  Google Scholar 

  14. Li, G., Feng, B., Zhou, H., et al.: Adaptive service function chaining mappings in 5G using deep Q-learning. Comput. Commun. 152, 305–315 (2020)

    Article  Google Scholar 

  15. Kibalya, G., Serrat, J., Gorricho, J.L., et al.: A deep reinforcement learning-based algorithm for reliability-aware multi-domain service deployment in smart ecosystems. Neural Comput. Appl. 35(33), 23795–23817 (2020)

    Article  Google Scholar 

  16. Liu, Y., Lu, H., Li, X., et al.: Dynamic service function chain orchestration for NFV/MEC-enabled IoT networks: a deep reinforcement learning approach. IEEE Internet Things J. 8(9), 7450–7465 (2020)

    Article  Google Scholar 

  17. Kibalya, G., Serrat-Fernández, J., Gorricho, J.L., et al.: A reinforcement learning approach for virtual network function chaining and sharing in softwarized networks. IEEE Trans. Netw. Serv. Manag. 19(3), 3352–3370 (2022)

    Article  Google Scholar 

  18. Nobach, L., Rimac, I., Hilt, V., et al.: SliM: enabling efficient, seamless NFV state migration. In: 2016 IEEE 24th International Conference on Network Protocols (ICNP) , pp. 1–2. IEEE (2016).

  19. Behravesh, R., Harutyunyan, D., Coronado, E., et al.: Time-sensitive mobile user association and SFC placement in MEC-enabled 5G networks. IEEE Trans. Netw. Serv. Manag. 18(3), 3006–3020 (2021)

    Article  Google Scholar 

  20. Qu, K., Zhuang, W., Ye, Q., et al.: Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks. IEEE Trans. Commun. 68(4), 2394–2408 (2020)

    Article  Google Scholar 

  21. Noshy, M., Ibrahim, A., Ali, H.A.: Optimization of live virtual machine migration in cloud computing: a survey and future directions. J. Netw. Comput. Appl. 110, 1–10 (2018)

    Article  Google Scholar 

  22. Tao, Z., Xia, Q., Hao, Z., et al.: A survey of virtual machine management in edge computing. Proc. IEEE 107(8), 1482–1499 (2019)

    Article  Google Scholar 

  23. Mandal, U., Chowdhury, P., Tornatore, M., et al.: Bandwidth provisioning for virtual machine migration in cloud: strategy and application. IEEE Trans. Cloud Comput. 6(4), 967–976 (2016)

    Article  Google Scholar 

  24. Yi, B., Wang, X., Huang, M., et al.: Design and implementation of network-aware VNF migration mechanism. IEEE Access 8, 44346–44358 (2020)

    Article  Google Scholar 

  25. Sugisono, K., Fukuoka, A., Yamazaki, H.: Migration for VNF instances forming service chain. In: 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pp. 1–3. IEEE (2018)

  26. Machen, A., Wang, S., Leung, K.K., et al.: Live service migration in mobile edge clouds. IEEE Wirel. Commun. 25(1), 140–147 (2017)

    Article  Google Scholar 

  27. Machen, A., Wang, S., Leung, K.K., et al.: Migrating running applications across mobile edge clouds: poster. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 435–436 (2016)

  28. Sun, X., Ansari, N.: PRIMAL: profit maximization avatar placement for mobile edge computing. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

  29. Xie, J., Zhou, R., Sun, G., et al.: Fast recovery for online service function chaining interruption using adaptive migration. Cluster Comput. 1–19 (2022)

  30. Demirci, S., Sagiroglu, S.: Optimal placement of virtual network functions in software defined networks: a survey. J. Netw. Comput. Appl. 147, 102424 (2019)

    Article  Google Scholar 

  31. Gu, L., Zeng, D., Li, W., et al.: Intelligent VNF orchestration and flow scheduling via model-assisted deep reinforcement learning. IEEE J. Sel. Areas Commun. 38(2), 279–291 (2019)

    Article  Google Scholar 

  32. Kuo, T.W., Liou, B.H., Lin, K.C.J., et al.: Deploying chains of virtual network functions: on the relation between link and server usage. IEEE/ACM Trans. Netw. 26(4), 1562–1576 (2018)

    Article  Google Scholar 

  33. Gouareb, R., Friderikos, V., Aghvami, A.H.: Virtual network functions routing and placement for edge cloud latency minimization. IEEE J. Sel. Areas Commun. 36(10), 2346–2357 (2018)

    Article  Google Scholar 

  34. Bi, Y., Meixner, C., Bunyakitanon, M., et al.: Multi-objective deep reinforcement learning assisted service function chains placement. IEEE Trans. Netw. Serv. Manag. 18(4), 4134–4150 (2021)

    Article  Google Scholar 

  35. Wang, L., Lu, Z., Wen, X., et al.: Joint optimization of service function chaining and resource allocation in network function virtualization. IEEE Access 4, 8084–8094 (2016)

    Article  Google Scholar 

  36. Wang, S., Xu, J., Zhang, N., et al.: A survey on service migration in mobile edge computing. IEEE Access 6, 23511–23528 (2018)

    Article  Google Scholar 

  37. Eramo, V., Ammar, M., Lavacca, F.G.: Migration energy aware reconfigurations of virtual network function instances in NFV architectures. IEEE Access 5, 4927–4938 (2017)

    Article  Google Scholar 

  38. Cerroni, W., Callegati, F.: Live migration of virtual network functions in cloud-based edge networks. In: 2014 IEEE International Conference on Communications (ICC), pp. 2963–2968. IEEE (2014)

  39. Mazyavkina, N., Sviridov, S., Ivanov, S., et al.: Reinforcement learning for combinatorial optimization: a survey. Comput. Oper. Res. 134, 105400 (2021)

    Article  MathSciNet  Google Scholar 

  40. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 30, no 1 (2016)

  41. Xu, L., Hu, H., Liu, Y.: SFCSim: a network function virtualization resource allocation simulation platform. Cluster Comput. 1–14 (2022)

  42. Hu, H., Zhang, W., Xu, L., Qi, P.: A mobility-aware service function chain migration strategy based on deep reinforcement learning. J. Netw. Syst. Manag. 31(1), 21 (2023). https://doi.org/10.1007/s10922-022-09713-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and method design. The experimental simulation was mainly performed by Lingyi Xu, assisted by Wenbin Liu, Zhiwei Wang, Jianxiao Luo and Jinjiang Wang. The manuscript is written by Lingyi Xu, reviewed by Jianxiao Luo and Zhi Ma, and all authors read and approved the manuscript.

Corresponding author

Correspondence to Lingyi Xu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liu, W., Wang, Z. et al. Mobile-Aware Service Function Chain Intelligent Seamless Migration in Multi-access Edge Computing. J Netw Syst Manage 32, 49 (2024). https://doi.org/10.1007/s10922-024-09820-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09820-0

Keywords

Navigation