Skip to main content
Log in

A Lightweight Energy-Efficient Technique for QoS Enhancement in Urban VFC for Intelligent Transportation System

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Resource optimization, and quality of service (QoS) improvement, for real-time latency-sensitive applications, are the two major challenges in vehicular fog computing (VFC), due to constraint resources, and the temporal relevance of the results of queries. In this research work, a multi-objective optimization model is presented to optimize the latency, and resource utilization in VFC. A heuristic-based algorithm, the lightweight energy-efficient algorithm for quality-of-service (LEAQoS) to solve the MOO model and a novel concept of adaptive capacity tuning for the dynamic workload (ACT-DW) is proposed for optimizing the resource consumption and latency. The proposed technique enables dynamic resource provisioning in VFC, to process all the dynamically generated latency-sensitive requests at vehicular fog nodes (VFN). A novel and nature-inspired concept of publisher–subscriber at static fog nodes is proposed in this research work for the processing of algorithms, to conserve the scarce VFN resources for the processing of latency-sensitive requests. The simulation results on real-world data prove a significant improvement in latency, resource consumption, and QoS satisfaction ratio as compared to the state-of-the-art competing works. This proves the suitability and practical applicability of the proposed technique for latency-sensitive applications in VFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All the data required/used/generated for the completion of this research work is available within the text and (or) is available at DeepBinwal/VFC_Chandigarh(github.com).

References

  1. Zhang, Y., Wang, C.Y., Wei, H.Y.: Parking reservation auction for parked vehicle assistance in vehicular fog computing. IEEE Trans. Veh. Technol. 68(4), 3126–3139 (2019). https://doi.org/10.1109/TVT.2019.2899887

    Article  Google Scholar 

  2. Haj Qasem, M., Abu-Srhan, A., Natoureah, H., Alzaghoul, E.: Fog Computing framework for smart city design. Int. J. Interact Mob. Technol. 4(01), 109 (2020). https://doi.org/10.3991/ijim.v14i01.9762

    Article  Google Scholar 

  3. Tiwari, R., Sharma, H.K., Upadhyay, S., Sachan, S., Sharma, A.: Automated parking system-cloud and IoT based technique. Int. J. Eng. Adv. Technol. 8(4C), 116–123 (2019). https://doi.org/10.13140/RG.2.2.26946.09929

    Article  Google Scholar 

  4. Khan, E., Garg, D., Tiwari, R., Upadhyay, S.: Automated toll tax collection system using cloud database. Int. Con. on Internet Things Smart Innov. Usages X (2018). https://doi.org/10.1109/IoT-SIU.2018.8519929

    Article  Google Scholar 

  5. Zhu, C., Pastor, G., Xiao, Y., Ylajaaski, A.: Vehicular fog computing for video crowdsourcing: applications, feasibility, and challenges. IEEE Commun. Mag. (2018). https://doi.org/10.1109/MCOM.2018.1800116

    Article  Google Scholar 

  6. Wang, X., et al.: A city-wide real-time traffic management system: enabling crowdsensing in social internet of vehicles. IEEE Commun. Mag. 56(9), 19–25 (2018). https://doi.org/10.1109/MCOM.2018.1701065

    Article  Google Scholar 

  7. Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., Chen, S.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016). https://doi.org/10.1109/TVT.2016.2532863

    Article  Google Scholar 

  8. Liu, B., et al.: A novel framework for message dissemination with consideration of destination prediction in VFC. Neural Comput. Appl. (2021). https://doi.org/10.1007/s00521-021-05754-9

    Article  Google Scholar 

  9. Tang, C., Wei, X., Zhu, C., Wang, Y., Jia, W.: Mobile vehicles as fog nodes for latency optimization in smart cities. IEEE Trans. Veh. Technol. 14(8), 1–1 (2020). https://doi.org/10.1109/tvt.2020.2970763

    Article  Google Scholar 

  10. Shrestha, R., Bajracharya, R., Nam, S.Y.: Challenges of future VANET and cloud-based approaches. Wirel Commun. Mob Comput. (2018). https://doi.org/10.1155/2018/5603518

    Article  Google Scholar 

  11. Tiwari, R., Mittal, M., Garg, S., Kumar, S.: Energy-aware resource scheduling in FoG environment for IoT-based applications. Lect. Notes Data Eng. Commun. Technol. 74, 1–19 (2022). https://doi.org/10.1007/978-981-16-3448-2_1

    Article  Google Scholar 

  12. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. Proc. ACM Mob Cloud Comput. Work (2012). https://doi.org/10.1145/2342509.2342513

    Article  Google Scholar 

  13. O. Consortium, A. Working, 2017 Open fog reference architecture for fog computing. Open Fog Consort Archit Work Gr

  14. Binwal, D.C., Kapoor, M.: A survey on architecture applications, and challenges in vehicular fog computing. Int. J. Sensors Wirel. Commun. Control (2022). https://doi.org/10.2174/2210327912666220127130014

    Article  Google Scholar 

  15. Datta, S.K., Da Costa, R.P.F., Harri, J., Bonnet, C.: Integrating connected vehicles in internet of things ecosystems: challenges and solutions. Int. Symp. a world Wireless Mob. Multimed. Networks (2016). https://doi.org/10.1109/WoWMoM.2016.7523574

    Article  Google Scholar 

  16. Menon, V.G., Prathap, J.: Vehicular fog computing. Int. J. Veh. Telemat. Infotain. Syst. 1(2), 15–23 (2017). https://doi.org/10.4018/ijvtis.2017070102

    Article  Google Scholar 

  17. Huang, C., Lu, R., Choo, K.K.R.: Vehicular fog computing: architecture, use case, and security and forensic challenges. IEEE Commun. Mag. 55(11), 105–111 (2017). https://doi.org/10.1109/MCOM.2017.1700322

    Article  Google Scholar 

  18. Hussain, M.M., Alam, M.S., Beg, M.M.S.: Vehicular fog computing-planning and design. Procedia Comput. Sci. 167(2019), 2570–2580 (2020). https://doi.org/10.1016/j.procs.2020.03.313

    Article  Google Scholar 

  19. Xiao, X., Hou, X., Chen, X., Liu, C., Li, Y.: Quantitative analysis for capabilities of vehicular fog computing. Inf. Sci.501, 742–760 (2019). https://doi.org/10.1016/j.ins.2019.03.065

    Article  Google Scholar 

  20. Tiwari, R., Kumar, N.: Cooperative gateway cache invalidation scheme for internet-based vehicular ad Hoc networks. Wirel. Pers. Commun. 85(4), 1789–1814 (2015). https://doi.org/10.1007/s11277-015-2867-3

    Article  Google Scholar 

  21. Tiwari, R., Kumar, N.: An adaptive cache invalidation technique for wireless environments. Telecommun. Syst. (2016). https://doi.org/10.1007/s11235-015-0070-1

    Article  Google Scholar 

  22. Zhou, Z., Liao, H., Wang, X., Mumtaz, S., Rodriguez, J.: When vehicular fog computing meets autonomous driving: computational resource management and task offloading. IEEE Netw. (2020). https://doi.org/10.1109/MNET.001.1900527

    Article  Google Scholar 

  23. Zadobrischi, E., Damian, M.: Vehicular communications utility in road safety applications: a step toward self-aware intelligent traffic systems. Symmetry (Basel) 13(3), 1–22 (2021). https://doi.org/10.3390/sym13030438

    Article  Google Scholar 

  24. Alharbi, H.A., Elgorashi, T.E.H., Elmirghani, J.M.H.: Energy efficient virtual machines placement over cloud-fog network architecture. IEEE Access 8, 94697–94718 (2020). https://doi.org/10.1109/ACCESS.2020.2995393

    Article  Google Scholar 

  25. Mekki, T., Jmal, R., Chaari, L., Jabri, I., Rachedi, A.: Vehicular fog resource allocation scheme: a multi-objective optimization based approach. Annu. Consum. Commun. Netw. Conf. (2020). https://doi.org/10.1109/CCNC46108.2020.9045361

    Article  Google Scholar 

  26. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application management in fog computing environments: a taxonomy review and future directions. ACM Comput. Surv. (2020). https://doi.org/10.1145/3403955

    Article  Google Scholar 

  27. Zhang, K., Peng, M., Sun, Y.: Delay-optimized resource allocation in fog based vehicular networks. IEEE Internet Things J. (2020). https://doi.org/10.1109/jiot.2020.3010861

    Article  Google Scholar 

  28. Alvi, A.N., et al.: Intelligent task offloading in fog computing based vehicular networks. Appl. Sci. 12(9), 201–212 (2022). https://doi.org/10.3390/app12094521

    Article  Google Scholar 

  29. Rahman, F.H., Newaz, S.H.S., Au, T.W., Suhaili, W.S., Mahmud, M.A.P., Lee, G.M.: EnTruVe: energy and trust-aware virtual machine allocation in vehicle fog computing for catering applications in 5G. Futur. Gener. Comput. Syst. 126, 196–210 (2022). https://doi.org/10.1016/j.future.2021.07.036

    Article  Google Scholar 

  30. Shaheen, Q., Shiraz, M., Hashmi, M.U., Mahmood, D., Zhiyu, Z., Akhtar, R.: A lightweight location-aware fog framework (LAFF) for QoS in internet of things paradigm. Mob. Inf. Syst. (2020). https://doi.org/10.1155/2020/8871976

    Article  Google Scholar 

  31. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module management for fog computing environments. ACM Trans. Internet Technol. (2018). https://doi.org/10.1145/3186592

    Article  Google Scholar 

  32. Yadav, R., Zhang, W., Kaiwartya, O., Song, H., Yu, S.: Energy–Latency tradeoff for dynamic computation offloading in vehicular fog computing. IEEE Trans. Veh. Technol. 69(12), 14198–14211 (2020). https://doi.org/10.1109/TVT.2020.3040596

    Article  Google Scholar 

  33. Sodhro, A.H., Sodhro, G.H., Guizani, M., Pirbhulal, S., Boukerche, A.: AI-enabled reliable channel modeling architecture for fog computing vehicular networks. IEEE Wirel. Commun. 27(2), 14–21 (2020). https://doi.org/10.1109/MWC.001.1900311

    Article  Google Scholar 

  34. Hameed, A.R., Ul Islam, S., Ahmad, I., Munir, K.: Energy- and performance-aware load-balancing in vehicular fog computing. Sustain. Comput. Informatics Syst. (2021). https://doi.org/10.1016/j.suscom.2020.100454

    Article  Google Scholar 

  35. Zhu, C., et al.: Folo: Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet Things J. (2019). https://doi.org/10.1109/JIOT.2018.2875520

    Article  Google Scholar 

  36. Hussain, M., Saad Alam, M., Sufyan Beg, M.M.M., Akhtar, N.: Towards minimizing delay and energy consumption in vehicular fog computing (VFC). J. Intell. Fuzzy Syst. 38(5), 6549–6560 (2020). https://doi.org/10.3233/jifs-179735

    Article  Google Scholar 

  37. Rj, D., et al.: A pub/sub based fog computing architecture for IoV. Int. Conf. Cloud. Comput. Technol. Sci. (2016). https://doi.org/10.1109/CloudCom.2016.26

    Article  Google Scholar 

  38. Binwal, D.C., Tiwari, R., Kapoor, M.: “Vehicle as Fog Server in Intelligent Transportation System”, in Communications in Computer and Information Science, pp. 94–101. Springer, Cham. (2022)

    Google Scholar 

  39. M. Behrisch, L. Bieker, J. E., S. Simulation, and undefined 2011, SUMO–simulation of urban mobility: an overview, elib.dlr.de, Accessed: Mar. 01, 2022. [Online]. Available: https://elib.dlr.de/71460/.

  40. Sommer, C., et al.: Veins: The open source vehicular network simulation framework. In: Recent advances in network simulation: the OMNeT++ environment and its ecosystem. Springer, Cham (2019)

    Google Scholar 

  41. Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R.: IFogSim2: An Extended iFogSim simulator for mobility clustering and microservice management in edge and fog computing environments. J. Sys. Software (2021). https://doi.org/10.1016/j.jss.2022.111351

    Article  Google Scholar 

  42. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: Ifogsim: a toolkit for modeling and simulation of resource management techniques in the internet of things edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017). https://doi.org/10.1002/spe.2509

    Article  Google Scholar 

  43. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011). https://doi.org/10.1002/SPE.995

    Article  Google Scholar 

  44. Wang, Z., Zheng, S., Ge, Q., Li, K.: Online offloading scheduling and resource allocation algorithms for vehicular edge computing system. IEEE Access 8, 52428–52442 (2020). https://doi.org/10.1109/ACCESS.2020.2981045

    Article  Google Scholar 

  45. Vohra, K., Pal, G., Kumar Gupta, V., Singh, S., Bansal, Y., Author, C.: A I O Ce Asiatica Li : a review o rece research. Pharmacologyonline 2, 440–462 (2011)

    Google Scholar 

  46. O’Neill, M.E., Mathews, K.: A weighted least squares approach to Levene’s test of homogeneity of variance. Aust. New Zeal. J. Stat. 42(1), 81–100 (2000). https://doi.org/10.1111/1467-842X.00109

    Article  MathSciNet  MATH  Google Scholar 

  47. Tiku, M.L.: Tables of the power of the f-test. J. Am. Stat. Assoc. 62(318), 525–539 (1967). https://doi.org/10.1080/01621459.1967.10482926

    Article  MathSciNet  MATH  Google Scholar 

  48. Levene test (nist.gov)

Download references

Acknowledgements

This work is a collaborative work between UPES and Indian Air Force. For research, an MoU is signed between UPES and Indian Air Force to use each other's computational and other resources. We thank both organizations for offering all support for completing this research for significant outcomes. We are grateful to anonymous reviewers for spending their precious time and effort in suggesting improvements in this work because of which this research work reached its present form.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

DC: Conceptualization, algorithm, implementation. writing. RT: problem Identification, supervision, paper review. MK: problem identification, supervision, paper review.

Corresponding author

Correspondence to Rajeev Tiwari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binwal, D.C., Tiwari, R. & Kapoor, M. A Lightweight Energy-Efficient Technique for QoS Enhancement in Urban VFC for Intelligent Transportation System. J Netw Syst Manage 31, 70 (2023). https://doi.org/10.1007/s10922-023-09759-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09759-8

Keywords

Navigation