Skip to main content
Log in

DeepVRM: Deep Learning Based Virtual Resource Management for Energy Efficiency

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Network function virtualization (NFV) provides dynamic, energy-efficient, and cost-effective network services by segregating network services from expensive and energy-hungry hardware components. Traditional hardware-based network functions are always ON with 100% capacity, resulting in massive energy consumption. In contrast, NFV enables different network services (NS) through virtual network functions (VNFs), which can reduce energy consumption, by automatic ON/OFF (auto-scaling) of the VNFs depending on the traffic load. However, auto-scaling will introduce delays in the network service management process. This delay can be minimized by estimating future resource requirements accurately and taking proactive steps ahead of time. In this research, we propose the use of deep learning based forecasting algorithms to predict the required VNFs and virtual CPU for each VNF to complete a network service, often deployed as service function chain (SFC). We use long short term memory (LSTM), bidirectional-LSTM, and convolutional neural network (CNN) based algorithms to forecast resources from univariate and multivariate network traffic data. Experimental results show that CNN and bidirectional-LSTM-based forecasting models can forecast more accurately than the prior studies. Based on the forecasting models, we propose a resource allocation algorithm (DeepVRM) that can efficiently allocate resources to complete SFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Montazerolghaem, A., Yaghmaee, M.H., Leon-Garcia, A.: Green cloud multimedia networking: Nfv/sdn based energy-efficient resource allocation. IEEE Trans. Green Commun. Netw. 4(3), 873–889 (2020)

    Article  Google Scholar 

  2. Rahman, S., Gupta, A., Tornatore, M., Mukherjee, B.: Dynamic workload migration over backbone network to minimize data center electricity cost. IEEE Trans. Green Commun. Netw. 2(2), 570–579 (2017)

    Article  Google Scholar 

  3. ETSI, N.F.V.: Network functions virtualisation (nfv). Manage. Orch. 1, V1 (2014)

    Google Scholar 

  4. Askari, L., Hmaity, A., Musumeci, F., Tornatore, M.: Virtual-networkfunction placement for dynamic service chaining in metro-area networks, in International Conference on Optical Network Design and Modeling (ONDM), IEEE, pp. 136-141 (2018)

  5. Rahman, S., Ahmed, T., Huynh, M., Tornatore, M., Mukherjee, B.: Auto-scaling network service chains using machine learning and negotiation game. IEEE Trans. Netw. Serv. Manage. 17(3), 1322–1336 (2020)

    Article  Google Scholar 

  6. Benmakrelouf, S., Kara, N., Tout, H., Rabipour, R., Edstrom, C.: Resource needs prediction in virtualized systems: generic proactive and selfadaptive solution. J. Netw. Comput. Appl. 148102, 443 (2019)

    Google Scholar 

  7. Assi, C., Ayoubi, S., El Khoury, N., Qu, L.: Energy-aware mapping and scheduling of network flows with deadlines on vnfs. IEEE Trans. Green Commun. Netw. 3(1), 192–204 (2018)

    Article  Google Scholar 

  8. Oliveira, T.P., Barbar, J.S., Soares, A.S.: Computer network traffic prediction: a comparison between traditional and deep learning neural networks. Intern. J. Big Data Intell. 3(1), 28–37 (2016)

    Google Scholar 

  9. Zaman, Z., Rahman, S., Naznin, M.: Novel approaches for vnf requirement prediction using dnn and lstm, in IEEE Global Communications Conference (GLOBECOM), IEEE, 2019, pp. 1-6

  10. Rahman, S., Ahmed, T., Huynh, Tornatore, M.M., Mukherjee, B.: Auto-scaling vnfs using machine learning to improve qos and reduce cost, in 2018 IEEE International Conference on Communications (ICC), IEEE, (2018), pp. 1-6

  11. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  12. Jmila, H., . Khedher, M.I., and M. A. El Yacoubi, Estimating vnf resource requirements using machine learning techniques, in International Conference on Neural Information Processing, pp. 883-892. Springer, Heidelberg (2017)

  13. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V., et al.: Support vector regression machines. Adv. Neural Inf. Proc. Syst. 9, 155–161 (1997)

    Google Scholar 

  14. A. Mestres, E. Alarcón, and A. Cabellos, A machine learning-based approach for virtual network function modeling, in IEEE Wireless Communications and Networking Conference Workshops (WCNCW), IEEE, 2018, pp. 237-242

  15. Mijumbi, R., Hasija, S., Davy, S., Davy, A., Jennings, B., Boutaba, R.: Topology-aware prediction of virtual network function resource requirements. IEEE Trans. Netw. Serv. Manage. 14(1), 106–120 (2017)

    Article  Google Scholar 

  16. Scalingi, A., Esposito, F., Muhammad, W., Pescapé, A.: Scalable provisioning of virtual network functions via supervised learning, in IEEE Conference on Network Softwarization (NetSoft), IEEE, 2019, pp. 423- 431

  17. Kim, H.-G., Jeong, S.-Y., Lee, D.-Y.Choi, H., Yoo, J.-H., Hong, J. W.-K.: A deep learning approach to vnf resource prediction using correlation between vnfs, in IEEE Conference on Network Softwarization (NetSoft), IEEE, 2019, pp. 444-449

  18. D. M. Manias, M. Jammal, H. Hawilo, et al., Machine learning for performanceaware virtual network function placement, in IEEE Global Communications Conference (GLOBECOM), IEEE, 2019, pp. 1-6

  19. Yao, Y., Guo, S., Li, P., Liu, G., Zeng, Y.: Forecasting assisted vnf scaling in nfv-enabled networks. Comput. Netw. 168, 107040 (2020)

    Article  Google Scholar 

  20. Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., Bertin, P.: Improving traffic forecasting for 5g core network scalability: a machine learning approach. IEEE Netw. 32(6), 42–49 (2018)

    Article  Google Scholar 

  21. N. Jalodia, S. Henna, and A. Davy, Deep reinforcement learning for topology-aware vnf resource prediction in nfv environments, in 2019 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), IEEE, 2019, pp. 1-5

  22. Pei, J., Hong, P., Pan, M., Liu, J., Zhou, J.: Optimal vnf placement via deep reinforcement learning in sdn/nfv-enabled networks. IEEE J. Sel. Areas Commun. 38(2), 263–278 (2019)

    Article  Google Scholar 

  23. Mahboob, T., Jung, Y.R., Chung, M.Y.: Dynamic vnf placement to manage user traffic flow in software-defined wireless networks. J. Netw. Syst. Manage. 28(3), 436–456 (2020)

    Article  Google Scholar 

  24. Schardong, F., Nunes, I., Schaeffer-Filho, A.: Nfv resource allocation: a systematic review and taxonomy of vnf forwarding graph embedding. Comput. Netw. 185, 107726 (2021)

    Article  Google Scholar 

  25. Fang, L., Zhang, X., Sood, K., Wang, Y., Yu, S.: Reliability-aware virtual network function placement in carrier networks. J. Netw. Compu. Appl. 154, 102536 (2020)

    Article  Google Scholar 

  26. Gupta, A., Habib, M.F., Mandal, U., Chowdhury, P., Tornatore, M., Mukherjee, B.: On service-chaining strategies using virtual network functions in operator networks. Comput. Netw. 133, 1–16 (2018)

    Article  Google Scholar 

  27. Li, B., Lu, W., Liu, S., Zhu, Z.: Deep-learning-assisted network orchestration for on-demand and cost-effective vnf service chaining in inter-dc elastic optical networks. J. Opt. Commun. Netw. 10(10), D29–D41 (2018)

    Article  Google Scholar 

  28. Datamarket. Internet traffic data. (2018), [Online]. Available: https://datamarket.com/data/set/232n

  29. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: Sndlib 1.0survivable network design library. Netw.: Intern. J. 55(3), 276–286 (2010)

    Article  Google Scholar 

  30. CISCO. Cisco cloud services router 1000v data sheet. (2020), [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/routers/cloud-services-router-1000v-series/data_sheet-c78-733443.html

  31. M. Bloem, T. Alpcan, S. Schmidt, and T. Basar, Malware filtering for network security using weighted optimality measures, in IEEE International Conference on Control Applications, IEEE, 2007, pp. 295-300

  32. Contreras, J., Espinola, R., Nogales, F., Conejo, A.: Arima models to predict next-day electricity prices. IEEE Trans. Power Syst. 18(3), 1014–1020 (2003). https://doi.org/10.1109/TPWRS.2002.804943

    Article  Google Scholar 

  33. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  34. A. Deshpande, A beginner’s guide to understanding convolutional neural networks, Retrieved March, vol. 31, no. 2017, (2016)

  35. Wang, X., Wang, Y., Peng, J., Zhang, Z., Tang, X.: A hybrid framework for multivariate long-sequence time series forecasting. Appl. Intell. 13, 1–20 (2022)

    Google Scholar 

  36. McKinney, W., et al.: Pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)

    Google Scholar 

  37. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  38. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  39. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1, arXiv preprint arXiv:1602.02830 (2016)

  40. A. F. Agarap, Deep learning using rectified linear units (relu), arXiv preprint arXiv:1803.08375 (2018)

  41. bluesummers. Lstm and bidirectional lstm. (2017), [Online]. Available: https://stackoverflow.com/questions/43035827/whats-the-differencebetween-a-bidirectional-lstm-and-an-lstm

  42. H. Pokharna. The best explanation of cnn. (2016), [Online]. Available: https://medium.com/technologymadeeasy/the-best-explanationof-convolutional-neural-networks-on-the-internet-fbb8b1ad5df8

Download references

Acknowledgements

This work has been carried out in the Department of Computer Science and Engineering (CSE), Bangladesh University of Engineering and Technology (BUET). The authors gratefully acknowledge the support and facilities provided by BUET Basic Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakia Zaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, Z., Rahman, S., Rafsani, F. et al. DeepVRM: Deep Learning Based Virtual Resource Management for Energy Efficiency. J Netw Syst Manage 31, 66 (2023). https://doi.org/10.1007/s10922-023-09752-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09752-1

Keywords

Navigation