Skip to main content
Log in

SGR-MOP Based Secrecy-Enabled Resource Allocation Scheme for 5G Networks

  • General Submission
  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The radio-cast nature of wireless communications is always exposed to the eavesdropping attack. To safeguard 5 G communications where both the CUs and Device to Device (D2D) users can communicate securely becomes a prime objection. To examine this issue we have investigated the eavesdropping attack in a considered 5 G Networks, and analysed the secrecy rate (SR), and data rate of the D2D communication enabled 5 G networks. Different from previous work mentioned in literature we have proposed a joint resource allocation and power allocation scheme with the constraint of unknown channel state information (CSI) of the presented eavesdropper (EDs) in a cell. We have proposed a Stackelberg game-based resource allocation scheme and a state of the art monarch butterflies optimization (MBO) based power allocation (SGR-MOP) scheme to enhance the SR of the CUs along with enhance the data rate of the cell as well. The proposed scheme is further subdivided into two sub-schemes where the resource allocation scheme is designed to form a group of CUs and D2D users to enhance the SR of the CUs. Moreover, the proposed power allocation scheme is designed to enhance the data rate of D2D users. We consider a scenario where the eNodeB (eNB) has all the channel state information (CSI) of the CUs and D2D users however, the presence of the eavesdropper is not known to the eNB. We have compared our proposed scheme with the existing related schemes mentioned in the literature. The simulation results display that our scheme outperforms compared with other related schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clemm, Alexander, Zhani, Mohamed Faten, Boutaba, Raouf: Network management 2030: operations and control of network 2030 services. J. Netw. Syst. Manag. 28(4), 721–750 (2020)

    Article  Google Scholar 

  2. Ahmed, M., Li, Y., Waqas, M., Sheraz, M., Jin, D., Han, Z.: A survey on socially aware device-to-device communications. IEEE Commun. Surv. Tutor. 20(3), 2169–2197 (2018). https://doi.org/10.1109/COMST.2018.2820069

    Article  Google Scholar 

  3. Maenhaut, Pieter-Jan., et al.: Resource management in a containerized cloud: status and challenges. J. Netw. Syst. Manag. 28(2), 197–246 (2020)

    Article  Google Scholar 

  4. Silva, Vinicius F., et al.: Joint content-mobility priority modeling for cached content selection in D2D networks. J. Netw. Syst. Manag. 29(1), 1–37 (2021)

    Article  Google Scholar 

  5. Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., Javed, M.A.: A survey of device-to-device communications: research issues and challenges. IEEE Commun. Surv. Tutor. 20(3), 2133–2168 (2018). https://doi.org/10.1109/COMST.2018.2828120

    Article  Google Scholar 

  6. Wen, S., Zhu, X., Lin, Y., Lin, Z., Zhang, X., Yang, D.: Achievable Transmission Capacity of Relay-Assisted Device-to-Device (D2D) Communication Underlay Cellular Networks. In: 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, pp. 1–5 (2013). https://doi.org/10.1109/VTCFall.2013.6692074

  7. Dubey, R., Mishra, P.K., Pandey, S.: Mixed uplink, downlink channel allocation and power allocation schemes for 5G networks. Wirel. Pers. Commun. 112, 2253–2274 (2020). https://doi.org/10.1007/s11277-020-07148-x

    Article  Google Scholar 

  8. Dubey, R., Sharma, R., Mishra, P.K., Pandey, S.: BAT Optimization based Power Allotment Scheme for 5G Networks. In: 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, 2020, pp. 1–5, https://doi.org/10.1109/CONECCT50063.2020.9198676

  9. Melki, L., Najeh, S., Besbes, H.: Interference management scheme for network-assisted multi-hop D2D communications. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, pp. 1–5 (2016). https://doi.org/10.1109/PIMRC.2016.7794834

  10. Yang, L., Wu, D., Shi, H., Long, Y., Cai, Y.: Social-aware joint mode selection and link allocation for device-to-device communication underlaying cellular networks. China Commun. 15(8), 92–107 (2018). https://doi.org/10.1109/CC.2018.8438276

    Article  Google Scholar 

  11. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975). https://doi.org/10.1002/j.1538-7305.1975.tb02040.x

    Article  MathSciNet  MATH  Google Scholar 

  12. Leung-Yan-Cheong, S., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978). https://doi.org/10.1109/TIT.1978.1055917

    Article  MathSciNet  MATH  Google Scholar 

  13. Barros, J., Rodrigues, M.R.D.: Secrecy Capacity of Wireless Channels. In: 2006 IEEE International Symposium on Information Theory, Seattle, pp. 356–360 (2006). https://doi.org/10.1109/ISIT.2006.261613

  14. Vega Sánchez, J.D., Urquiza-Aguiar, L., Paredes Paredes, M.C.: Physical Layer Security for 5G Wireless Networks: A Comprehensive Survey. In: 2019 3rd Cyber Security in Networking Conference (CSNet), Quito, pp. 122–129 (2019). https://doi.org/10.1109/CSNet47905.2019.9108955

  15. Sánchez, J.D.V., Urquiza-Aguiar, L., Paredes, M.C.P., et al.: Survey on physical layer security for 5G wireless networks. Ann. Telecommun. (2020). https://doi.org/10.1007/s12243-020-00799-8

    Article  Google Scholar 

  16. Ashtiani, A.F., Pierre, S.: Secrecy Based Resource Allocation for D2D Communication Using Tabu Search Algorithm. In: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pp. 1–5 (2019). https://doi.org/10.1109/CCECE43985.2019.9052395

  17. Zhang, R., Cheng, X., Yang, L.: Cooperation via spectrum sharing for Physical layer security in device-to-device communications cnderlaying cellular networks. IEEE Trans. Wirel. Commun. 15(8), 5651–5663 (2016). https://doi.org/10.1109/TWC.2016.2565579

    Article  Google Scholar 

  18. Xu, H., Pan, C., Xu, W., Shi, J., Chen, M., Heng, W.: Improving Wireless Physical Layer Security via D2D Communication. In: 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, pp. 1–7 (2018). https://doi.org/10.1109/GLOCOM.2018.8647915

  19. Jia, L., Yao, F., Sun, Y., Niu, Y., Zhu, Y.: Bayesian Stackelberg game for antijamming transmission with incomplete information. IEEE Commun. Lett. 20(10), 1991–1994 (2016). https://doi.org/10.1109/LCOMM.2016.2598808

    Article  Google Scholar 

  20. Xu, Y., et al.: A one-leader multi-follower Bayesian-Stackelberg game for anti-jamming transmission in UAV communication networks. IEEE Access 6, 21697–21709 (2018). https://doi.org/10.1109/ACCESS.2018.2828033

    Article  Google Scholar 

  21. Shah, H.A., Koo, I.: A novel physical layer security scheme in OFDM-based cognitive radio networks. IEEE Access 6, 29486–29498 (2018). https://doi.org/10.1109/ACCESS.2018.2842826

    Article  Google Scholar 

  22. Zou, Y.: Physical-layer security for spectrum sharing systems. IEEE Trans. Wirel. Commun. 16(2), 1319–1329 (2017). https://doi.org/10.1109/TWC.2016.2645200

    Article  Google Scholar 

  23. Lee, K., Hong, J.: Power control for energy efficient D2D communication in heterogeneous networks with eavesdropper. IEEE Commun. Lett. 21(11), 2536–2539 (2017). https://doi.org/10.1109/LCOMM.2017.2718521

    Article  Google Scholar 

  24. Wang, W., Teh, K.C., Li, K.H.: Enhanced physical layer security in D2D spectrum sharing networks. IEEE Wirel. Commun. Lett. 6(1), 106–109 (2017). https://doi.org/10.1109/LWC.2016.2634559

    Article  Google Scholar 

  25. Liu, C., Lv, T., Gao, H., Lu, Y.: Enhanced Physical Layer Security for Ultra-Dense D2D Communications Underlaying Cellular Networks with Full-Duplex Users. In: 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1–6 (2017). https://doi.org/10.1109/GLOCOMW.2017.8269199

  26. Mei, W., Chen, Z., Fang, J., Fu, B.: Secure D2D-enabled cellular communication against selective eavesdropping. In: 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1–7 (2017). https://doi.org/10.1109/ICC.2017.7996937

  27. Zhao, N., Yu, F.R., Li, M., Yan, Q., Leung, V.C.M.: Physical layer security issues in interference- alignment-based wireless networks. IEEE Commun. Mag. 54(8), 162–168 (2016). https://doi.org/10.1109/MCOM.2016.7537191

    Article  Google Scholar 

  28. Zou, Y., Zhu, J., Li, X., Hanzo, L.: Relay selection for wireless communications against eavesdropping: a security-reliability trade-off perspective. IEEE Netw. 30(5), 74–79 (2016). https://doi.org/10.1109/MNET.2016.7579030

    Article  Google Scholar 

  29. Le, T.N., Chin, W., Lin, Y.: Non-cooperative and cooperative PUEA detection using physical layer in mobile OFDM-based cognitive radio networks. In: 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, pp. 1–5 (2016). https://doi.org/10.1109/ICCNC.2016.7440583

  30. Zhang, W., He, W., Chen, X., Cai, Y., Guan, X., Qu, J.: Power allocation for improving physical layer security in D2D communication via stackelberg game. In: 2016 8th International Conference on Wireless Communications and Signal Processing (WCSP), Yangzhou, pp. 1–5 (2016). https://doi.org/10.1109/WCSP.2016.7752663

  31. Qu, J., Cai, Y., Zheng, J., et al.: Power allocation for device-to-device communication underlaying cellular networks under a probabilistic eavesdropping scenario. Ann. Telecommun. 71, 389–398 (2016). https://doi.org/10.1007/s12243-016-0515-x

    Article  Google Scholar 

  32. Myung, Hyung G.: Technical overview of 3GPP LTE. Polytechnic University of New York, New York (2008)

    Google Scholar 

  33. Guidelines for evaluation of radio interface technologies for IMT-advanced, Int. Telecommun. Union (ITU), Tech. Rep. ITU-R M.2135 (2008)

  34. Propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. Int. Telecommun. Union (ITU), Tech. Rep. ITU-R (P.1411-4) (2007)

  35. Monderer, Dov, Shapley, Lloyd: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lucchetti, R., Mignanego, F., Pieri, G.: Existence theorems of equilibrium points in Stackelberg. Optimization 18(6), 857–866 (1987). https://doi.org/10.1080/02331938708843300

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural. Comput. Applic. 31, 1995–2014 (2019). https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  38. Breed, Greg A., Severns, Paul M., Edwards, Andrew M.: Apparent power-law distributions in animal movements can arise from intraspecific interactions. J. R Soc Interface 12(103), 20140927 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rishav Dubey, Pavan Kumar Mishra or Sudhakar Pandey.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (rar 3128 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, R., Mishra, P.K. & Pandey, S. SGR-MOP Based Secrecy-Enabled Resource Allocation Scheme for 5G Networks. J Netw Syst Manage 31, 60 (2023). https://doi.org/10.1007/s10922-023-09750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09750-3

Keywords

Navigation