Skip to main content
Log in

Assisted Monitoring and Security Provisioning for 5G Microservices-Based Network Slices with SWEETEN

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

5G networks have imposed a drastic shift in how mobile telecommunications must operate. In order to comply with the new requirements, solutions based on network function virtualization (NFV) and network slicing must be carried out. Regarding NFV in particular, the trend towards pulverizing the monolithic software in a microservices-based one carries network management challenges to operators. The deployment and integration of one or more network management software with the managed services is as important as it is delicate, as stringent requirements of 5G applications must be respected. In this paper, we propose SWEETEN as a solution for automating the deployment and transparently integrating network management solutions from different management disciplines, in this case, monitoring and security. Demonstrating its usability through a intelligent healthcare use case, SWEETEN is shown to transparently provide monitoring and security solutions for a complete network slice, enabling compliance with privacy requirements through minimal low-level interventions from the network slice tenant. The results show how SWEETEN integration of monitoring and security disciplines can assist users in guaranteeing the correct operation of their deployments regardless of the underlying software solutions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Relevant source code and data can be found at https://github.com/ComputerNetworks-UFRGS/sweeten.

Notes

  1. https://medium.com/@pklinker/performance-impacts-of-an-istio-service-mesh-63957a0000b.

  2. https://hub.docker.com/.

  3. https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html.

  4. https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening.

References

  1. Barakabitze, A.A., Ahmad, A., Mijumbi, R., Hines, A.: 5g network slicing using sdn and nfv: a survey of taxonomy, architectures and future challenges. Comput. Netw. 167, 106984 (2020)

    Article  Google Scholar 

  2. ETSI, NFVISG: GS NFV-MAN 001 V1. 1.1 network function virtualisation (NFV); Management and Orchestration. Dec (2014). https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

  3. Chowdhury, S.R., Salahuddin, M.A., Limam, N., Boutaba, R.: Re-architecting NFV ecosystem with microservices: state of the art and research challenges. IEEE Netw. 33(3), 168–176 (2019)

    Article  Google Scholar 

  4. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R., Safina, L.: Microservices: yesterday, today, and tomorrow, pp. 195–216 (2017). Springer

  5. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of the art, and future research opportunities. In: 13th IEEE international conference on service-oiented system engineering (SOSE), pp. 122–127 (2019). IEEE

  6. Zhang, S., Wang, Y., Zhou, W.: Towards secure 5g networks: a survey. Comput. Netw. 162, 106871 (2019). https://doi.org/10.1016/j.comnet.2019.106871

    Article  Google Scholar 

  7. de Jesus Martins, R., Dalla-Costa, A.G., Wickboldt, J.A., Granville, L.Z.: Sweeten: Automated network management provisioning for 5g microservices-based virtual network functions. In: 2020 16th international conference on network and service management (CNSM), pp. 1–9 (2020). IEEE

  8. Wang, D., Chen, D., Song, B., Guizani, N., Yu, X., Du, X.: From iot to 5g i-iot: The next generation iot-based intelligent algorithms and 5g technologies. IEEE Commun. Magazine 56(10), 114–120 (2018). https://doi.org/10.1109/MCOM.2018.1701310

    Article  Google Scholar 

  9. Xu, J., Yao, J., Wang, L., Ming, Z., Wu, K., Chen, L.: Narrowband internet of things: evolutions, technologies, and open issues. IEEE Internet Things J. 5(3), 1449–1462 (2018). https://doi.org/10.1109/JIOT.2017.2783374

    Article  Google Scholar 

  10. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architectures: an industrial survey. In: 2018 IEEE international conference on software architecture (ICSA), pp. 29–2909 (2018). https://doi.org/10.1109/ICSA.2018.00012

  11. Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K.: Network slicing in 5g: survey and challenges. IEEE Commun. Magazine 55(5), 94–100 (2017). https://doi.org/10.1109/MCOM.2017.1600951

    Article  Google Scholar 

  12. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018). https://doi.org/10.1109/COMST.2018.2815638

    Article  Google Scholar 

  13. Slamnik-Kriještorac, N., Kremo, H., Ruffini, M., Marquez-Barja, J.M.: Sharing distributed and heterogeneous resources toward end-to-end 5G networks: a comprehensive survey and a taxonomy. IEEE Commun. Surv. Tutor. 22(3), 1592–1628 (2020)

    Article  Google Scholar 

  14. Kist, M., Santos, J.F., Collins, D., Rochol, J., Dasilva, L.A., Both, C.B.: Airtime: End-to-end virtualization layer for ran-as-a-service in future multi-service mobile networks. IEEE Trans. Mobile Comput., (2020). https://doi.org/10.1109/TMC.2020.3046535

  15. da Silva Coelho, W., Benhamiche, A., Perrot, N., Secci, S.: On the impact of novel function mappings, sharing policies, and split settings in network slice design. In: 2020 16th international conference on network and service management (CNSM), pp. 1–9 (2020). IEEE

  16. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: the journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018). https://doi.org/10.1109/MS.2018.2141039

    Article  Google Scholar 

  17. Lee, S., Levanti, K., Kim, H.S.: Network monitoring: present and future. Comput. Netw. 65, 84–98 (2014)

    Article  Google Scholar 

  18. Stallings, W.: Cryptography and network security, (2006). Springer

  19. Enns, R.: Netconf configuration protocol. RFC 2006, 6241 (2006)

  20. Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science 349(6245), 261–266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Franco, M.F., Rodrigues, B., Scheid, E.J., Jacobs, A., Killer, C., Granville, L.Z., Stiller, B.: Secbot: a business-driven conversational agent for cybersecurity planning and management. In: 2020 16th international conference on network and service management (CNSM), pp. 1–7 (2020). IEEE

  22. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

  23. de Jesus Martins, R., Hecht, R.B., Machado, E.R., Nobre, J.C., Wickboldt, J.A., Granville, L.Z.: Micro-service based network management for distributed applications. In: 34th international conference on advanced information networking and applications (AINA), pp. 922–933 (2020). Springer

  24. Pahl, C.: Containerization and the paas cloud. IEEE Cloud Comput. 2(3), 24–31 (2015)

    Article  Google Scholar 

  25. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml\(^\text{TM}\)) version 1.1. Working Draft 11 (2009)

  26. Bernstein, D.: Containers and cloud: from lxc to docker to kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)

    Article  Google Scholar 

  27. Prometheus Authors: Prometheus-monitoring system & time series database. prometheus.io (2017). https://prometheus.io/

  28. Series, M.: Imt vision–framework and overall objectives of the future development of imt for 2020 and beyond. Recomm. ITU 2083, 10 (2015)

  29. Sun, Y., Tian, Z., Li, M., Zhu, C., Guizani, N.: Automated attack and defense framework toward 5g security. IEEE Netw. 34(5), 247–253 (2020). https://doi.org/10.1109/MNET.011.1900635

    Article  Google Scholar 

  30. Malik, H., Alam, M.M., Moullec, Y.L., Kuusik, A.: Narrowband-iot performance analysis for healthcare applications. Proc. Comput. Sci. 130, 1077–1083 (2018). https://doi.org/10.1016/j.procs.2018.04.156

  31. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: an overview. IEEE Commun Surv Tutor 19(2), 855–873 (2017)

    Article  Google Scholar 

  32. Kamiyama, N., Nakao, A.: Analyzing dynamics of mvno market using evolutionary game. In: 15th international conference on network and service management (CNSM), pp. 1–6 (2019). IEEE

  33. Beyene, Y.D., Jantti, R., Tirkkonen, O., Ruttik, K., Iraji, S., Larmo, A., Tirronen, T., a. J. Torsner: Nb-iot technology overview and experience from cloud-ran implementation. IEEE Wireless Commun 24(3), 26–32 (2017). https://doi.org/10.1109/MWC.2017.1600418

  34. Wubben, D., Rost, P., Bartelt, J.S., Lalam, M., Savin, V., Gorgoglione, M., Dekorsy, A., Fettweis, G.: Benefits and impact of cloud computing on 5G signal processing: flexible centralization through cloud-ran. IEEE Signal Process Magazine 31(6), 35–44 (2014)

    Article  Google Scholar 

  35. Marotta, M.A., Ahmadi, H., Rochol, J., DaSilva, L., Both, C.B.: Characterizing the relation between processing power and distance between bbu and rrh in a cloud ran. IEEE Wireless Commun. Lett. 7(3), 472–475 (2018)

    Article  Google Scholar 

  36. Ho, C.Y., Cheng, R.G., Chen, J.W., Liu, C.S.: Open nb-iot network in a pc. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2019). IEEE

Download references

Acknowledgements

This study was partially funded by CAPES - Finance Code 001. We also thank the funding of CNPq, Research Productivity Scholarship grants ref. 313893/2018-7 and 312392/2017-6.

Funding

As per the acknowledgement section, this study was partially funded by CAPES - Finance Code 001. We also thank the funding of CNPq, Research Productivity Scholarship grants ref. 313893/2018-7 and 312392/2017-6.

Author information

Authors and Affiliations

Authors

Contributions

Rafael Martins wrote the main manuscript text. All authors reviewed the manuscript, discussed the proposal and designed the experiments that make up for the current work.

Corresponding author

Correspondence to Rafael de Jesus Martins.

Ethics declarations

Competing interest

The authors have no financial or personal competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus Martins, R., Wickboldt, J.A. & Granville, L.Z. Assisted Monitoring and Security Provisioning for 5G Microservices-Based Network Slices with SWEETEN. J Netw Syst Manage 31, 36 (2023). https://doi.org/10.1007/s10922-023-09728-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09728-1

Keywords

Navigation