Skip to main content
Log in

A Hybrid Application-Aware VHO Scheme for Coexisting VLC and WLAN Indoor Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In spite of several promising attributes that motivate industry players to adopt visible light communication (VLC), its strong coverage limitation is a major disincentive. A reasonable way to overcome this bottleneck in indoor environments is to capitalize on the prevailing wireless local area network (WLAN) to boost reliable mobile access. To this end, a vertical handover (VHO) scheme is required to smoothly merge VLC networks and WLANs. Thus, this article presents an adaptive VHO scheme which considers the cause of a VLC link disruption and the types of applications running in a user device (UD) to make appropriate handover decisions. The proposed hybrid application-aware VHO (HA-VHO) technique combines three approaches (immediate handover, static dwell timing and dynamic dwell timing), in order to improve the overall handover outcome. Performance comparisons with other VHO designs (immediate VHO, dwell VHO and channel adaptive dwell VHO) reveal that the HA-VHO scheme provides higher data rates in most cases, while adaptively reducing the total signaling cost of inter-network handovers. What is more, it can provide relatively high quality of experience (QoE) for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akkari, N., Hazmi, H.A.: Context-aware handover for voice and video applications in WiMax/WiFi. In: 2013 World Congress on Computer and Information Technology (WCCIT). IEEE (2013). https://doi.org/10.1109/wccit.2013.6618674

  2. Alhazmi, H., Akkari, N.: An overview of context-aware vertical handover schemes in heterogeneous networks. Int. J. Comput. Sci. Eng. Surv. 2(4), 33–44 (2011). https://doi.org/10.5121/ijcses.2011.2403

    Article  Google Scholar 

  3. Amewuda, A.B., Katsriku, F.A., Abdulai, J.D.: Implementation and evaluation of WLAN 802.11ac for residential networks in NS-3. J. Comput. Netw. Commun. (2018). https://doi.org/10.1155/2018/3518352

    Article  Google Scholar 

  4. Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T.Y., Alouini, M.S.: Velocity-aware handover management in two-tier cellular networks. IEEE Trans. Wirel. Commun. 16(3), 1851–1867 (2017). https://doi.org/10.1109/twc.2017.2655517

    Article  Google Scholar 

  5. Bao, X., Adjardjah, W., Okine, A.A., Zhang, W., Dai, J.: A QoE-maximization-based vertical handover scheme for VLC heterogeneous networks. EURASIP J. Wirel. Commun. Netw. 2018(1), 269 (2018). https://doi.org/10.1186/s13638-018-1284-1

    Article  Google Scholar 

  6. Bao, X., Dai, J., Zhu, X.: Visible light communications heterogeneous network (VLC-HetNet): new model and protocols for mobile scenario. Wirel. Netw. 23(1), 299–309 (2017). https://doi.org/10.1007/s11276-016-1233-z

    Article  Google Scholar 

  7. Bao, X., Okine, A.A., Adjardjah, W., Zhang, W., Dai, J.: Channel adaptive dwell timing for handover decision in VLC-WiFi heterogeneous networks. EURASIP J. Wirel. Commun. Netw. 2018(1), 244 (2018). https://doi.org/10.1186/s13638-018-1257-4

    Article  Google Scholar 

  8. Chowdhury, M.Z., Shahjalal, M., Ahmed, S., Jang, Y.M.: 6g wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020). https://doi.org/10.1109/ojcoms.2020.3010270

    Article  Google Scholar 

  9. Ghosh, S.K., Ghosh, S.C.: Analyzing handover performances of mobility management protocols in ultra-dense networks. J. Netw. Syst. Manag. 28(4), 1427–1452 (2020). https://doi.org/10.1007/s10922-020-09544-x

    Article  Google Scholar 

  10. Gorlatch, S., Humernbrum, T., Glinka, F.: Improving QoS in real-time internet applications: from best-effort to software-defined networks. In: 2014 International Conference on Computing, Networking and Communications (ICNC). IEEE (2014). https://doi.org/10.1109/iccnc.2014.6785329

  11. Haider, A., Gondal, I., Kamruzzaman, J.: Dynamic dwell timer for hybrid vertical handover in 4g coupled networks. In: 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring). IEEE (2011). https://doi.org/10.1109/vetecs.2011.5956636

  12. Hou, J., O’Brien, D.: Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Trans. Wirel. Commun. 5(1), 176–185 (2006). https://doi.org/10.1109/twc.2006.1576541

    Article  Google Scholar 

  13. Jain, I.K., Kumar, R., Panwar, S.S.: The impact of mobile blockers on millimeter wave cellular systems. IEEE J. Sel. Areas Commun. 37(4), 854–868 (2019). https://doi.org/10.1109/jsac.2019.2898756

    Article  Google Scholar 

  14. Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649–1678 (2015). https://doi.org/10.1109/comst.2015.2417576

    Article  Google Scholar 

  15. Liang, S., Tian, H., Fan, B., Bai, R.: A novel vertical handover algorithm in a hybrid visible light communication and LTE system. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). IEEE (2015). https://doi.org/10.1109/vtcfall.2015.7390808

  16. Liang, S., Zhang, Y., Fan, B., Tian, H.: Multi-attribute vertical handover decision-making algorithm in a hybrid VLC-femto system. IEEE Commun. Lett. 21(7), 1521–1524 (2017). https://doi.org/10.1109/lcomm.2017.2654252

    Article  Google Scholar 

  17. Liu, J.H., Li, Q., Zhang, X.Y.: Cellular coverage optimization for indoor visible light communication and illumination networks. J. Commun. 9(11), 891–898 (2014). https://doi.org/10.12720/jcm.9.11.891-898

    Article  Google Scholar 

  18. Liu, R., Zhang, C.: Dynamic dwell timer for vertical handover in VLC-WLAN heterogeneous networks. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE (2017). https://doi.org/10.1109/iwcmc.2017.7986465

  19. Luo, J., Fan, L., Li, H.: Indoor positioning systems based on visible light communication: state of the art. IEEE Commun. Surv. Tutor. 19(4), 2871–2893 (2017). https://doi.org/10.1109/COMST.2017.2743228

    Article  Google Scholar 

  20. Marce, O., Tran, H.H., Tuffin, B.: Double-sided auctions applied to vertical handover for mobility management in wireless networks. J. Netw. Syst. Manag. 22(4), 658–681 (2013). https://doi.org/10.1007/s10922-013-9269-1

    Article  Google Scholar 

  21. Minhas, T.N., Fiedler, M.: Mitigation of the effects of network outage on video QoE using a sender buffer. Electronics 10(10), 1209 (2021). https://doi.org/10.3390/electronics10101209

    Article  Google Scholar 

  22. Nah, F.F.H.: A study on tolerable waiting time: how long are web users willing to wait? Behav. Inf. Technol. 23(3), 153–163 (2004). https://doi.org/10.1080/01449290410001669914

    Article  Google Scholar 

  23. Nah, J.W., Chun, S.M., Wang, S., Park, J.T.: Adaptive handover method with application-awareness for multimedia streaming service in wireless lan. In: 2009 International Conference on Information Networking, pp. 1–7. IEEE (2009)

  24. Obeed, M., Salhab, A.M., Zummo, S.A., Alouini, M.: Joint load balancing and power allocation for hybrid VLC/RF networks. In: 2017 IEEE Global Communications Conference, GLOBECOM, Singapore, December 4–8, 2017, pp. 1–6. IEEE (2017). https://doi.org/10.1109/GLOCOM.2017.8254783

  25. Rahaim, M.B., Vegni, A.M., Little, T.D.C.: A hybrid radio frequency and broadcast visible light communication system. In: Workshops Proceedings of the Global Communications Conference, GLOBECOM 2011, 5–9 December 2011, Houston, Texas, USA, pp. 792–796. IEEE (2011). https://doi.org/10.1109/GLOCOMW.2011.6162563

  26. Shao, S., Khreishah, A., Rahaim, M.B., Elgala, H., Ayyash, M., Little, T.D.C., Wu, J.: An indoor hybrid wifi-vlc internet access system. In: 11th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS, Philadelphia, PA, USA, October 28–30, 2014, pp. 569–574. IEEE Computer Society (2014). https://doi.org/10.1109/MASS.2014.76

  27. Soltani, M.D., Kazemi, H., Safari, M., Haas, H.: Handover modeling for indoor li-fi cellular networks: The effects of receiver mobility and rotation. In: 2017 IEEE Wireless Communications and Networking Conference, WCNC, San Francisco, CA, USA, March 19–22, 2017, pp. 1–6. IEEE (2017). https://doi.org/10.1109/WCNC.2017.7925676

  28. Soltani, M.D., Purwita, A.A., Zeng, Z., Haas, H., Safari, M.: Modeling the random orientation of mobile devices: measurement, analysis and LiFi use case. IEEE Trans. Commun. 67(3), 2157–2172 (2019). https://doi.org/10.1109/tcomm.2018.2882213

    Article  Google Scholar 

  29. Soltani, M.D., Zeng, Z., Kazemi, H., Chen, C., Haas, H., Safari, M.: A study of sojourn time for indoor LiFi cellular networks. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6 (2019). https://doi.org/10.1109/PIMRC.2019.8904876

  30. Vanhatupa, T.: Wi-Fi capacity analysis for 802.11 ac and 802.11 n: Theory & practice. Ekahau Inc. (2013)

  31. Vegni, A.M., Little, T.D.C.: Handover in VLC systems with cooperating mobile devices. In: International Conference on Computing, Networking and Communications, ICNC 2012, Maui, HI, USA, January 30–February 2, 2012, pp. 126–130. IEEE Computer Society (2012). https://doi.org/10.1109/ICCNC.2012.6167395

  32. Vegni, A.M., Tamea, G., Inzerilli, T., Cusani, R.: A combined vertical handover decision metric for qos enhancement in next generation networks. In: 5th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2009, Marrakech, Morocco, 12–14 October 2009, Proceedings, pp. 233–238. IEEE Computer Society (2009). https://doi.org/10.1109/WiMob.2009.47

  33. Wang, F., Wang, Z., Qian, C., Dai, L., Yang, Z.: Efficient vertical handover scheme for heterogeneous VLC-RF systems. J. Opt. Commun. Netw. 7(12), 1172 (2015). https://doi.org/10.1364/jocn.7.001172

    Article  Google Scholar 

  34. Wang, F., Wang, Z., Qian, C., Dai, L., Yang, Z.: MDP-based vertical handover scheme for indoor VLC-WiFi systems. In: 2015 Opto-Electronics and Communications Conference (OECC). IEEE (2015). https://doi.org/10.1109/oecc.2015.7340272

  35. Wang, Y., Basnayaka, D.A., Haas, H.: Dynamic load balancing for hybrid li-fi and RF indoor networks. In: IEEE International Conference on Communication, ICC 2015, London, United Kingdom, June 8–12, 2015, Workshop Proceedings, pp. 1422–1427. IEEE (2015). https://doi.org/10.1109/ICCW.2015.7247378

  36. Wang, Y., Wu, X., Haas, H.: Fuzzy logic based dynamic handover scheme for indoor li-fi and RF hybrid network. In: 2016 IEEE International Conference on Communications, ICC, Kuala Lumpur, Malaysia, May 22–27, 2016, pp. 1–6. IEEE (2016). https://doi.org/10.1109/ICC.2016.7510823

  37. Wu, X., Chen, C., Haas, H.: Mobility management for hybrid LiFi and WiFi networks in the presence of light-path blockage. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–5 (2018). https://doi.org/10.1109/VTCFall.2018.8690694

  38. Wu, X., Haas, H.: Handover skipping for lifi. IEEE Access 7, 38369–38378 (2019). https://doi.org/10.1109/ACCESS.2019.2903409

    Article  Google Scholar 

  39. Wu, X., Haas, H.: Mobility-aware load balancing for hybrid LiFi and WiFi networks. IEEE/OSA J. Opt. Commun. Netw. 11(12), 588–597 (2019). https://doi.org/10.1364/JOCN.11.000588

    Article  Google Scholar 

  40. Yan, C., Xu, Y., Shen, J., Chen, J.: A combination of VLC and WiFi based indoor wireless access network and its handover strategy. In: 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB). IEEE (2016). https://doi.org/10.1109/icuwb.2016.7790528

  41. Yeryomin, Y., Seitz, J.: Application-aware optimization approaches for multiple-criteria network selection in mobile heterogeneous networks. In: 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), pp. 1–8. IEEE (2017)

Download references

Acknowledgements

This work was supported in part by the Key Research and Development Plan of Jiangsu Province (BE2018108), National Natural Science Foundation of China (61772243), Natural Science Foundation of Jiangsu Province (BK20170557), Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2018D13) and The Young Talent Project of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrews A. Okine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okine, A.A., Bao, X., Mongoungou, J. et al. A Hybrid Application-Aware VHO Scheme for Coexisting VLC and WLAN Indoor Networks. J Netw Syst Manage 30, 52 (2022). https://doi.org/10.1007/s10922-022-09666-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09666-4

Keywords

Navigation