Skip to main content
Log in

Network Traffic Classification Using Deep Learning Networks and Bayesian Data Fusion

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The rapid growth of current computer networks and their applications has made network traffic classification more important. The latest approach in this field is the use of deep learning. But the problem of deep learning is that it needs a lot of data for training. On the other hand, the lack of a sufficient amount of data for different types of network traffic has a negative effect on the accuracy of the traffic classification. In this regard, one of the appropriate solutions to address this challenge is the use of data fusion methods in decision level. Data fusion techniques make possible to achieve better results by combining classifiers. In this paper, a network traffic classification approach based on deep learning and data fusion techniques is presented. The proposed method can identify encrypted traffic and distinguish between VPN and non-VPN network traffic. In the proposed approach, first, a preprocessing on the dataset is carried out, then three deep learning networks, namely, Deep Belief Network, Convolution Neural Network, and Multi-layer Perceptron to classify network traffic are employed. Finally, the results of all three classifiers using Bayesian decision fusion are combined. The experimental results on the ISCX VPN-nonVPN dataset show that the proposed method improves the classification accuracy and performs well on different network traffic types. The average accuracy of the proposed method is 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bagui, S., Fang, X., Kalaimannan, E., Bagui, S.C., Sheehan, J.: Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features. J. Cyber Secur. Technol. 1(2), 108–126 (2017)

    Article  Google Scholar 

  2. Huang, C., Min, G., Wu, Y., Ying, Y., Pei, K., Xiang, Z.: Time series anomaly detection for trustworthy services in cloud computing systems. IEEE Trans. Big Data (2017). https://doi.org/10.1109/TBDATA.2017.2711039

  3. Tsimenidis, S., Lagkas, T., Rantos, K.: Deep learning in IoT intrusion detection. J. Netw. Syst. Manag. 30(1), 1–40 (2022)

    Article  Google Scholar 

  4. Verkerken, M., D’hooge, L., Wauters, T., Volckaert, B., De Turck, F.: Towards model generalization for intrusion detection: unsupervised machine learning techniques. J. Netw. Syst. Manag. 30(1), 1–25 (2022)

    Article  Google Scholar 

  5. Velan, P., Čermák, M., Čeleda, P., Drašar, M.: A survey of methods for encrypted traffic classification and analysis. Int. J. Netw. Manag. 25(5), 355–374 (2015)

    Article  Google Scholar 

  6. Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.M.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 1–99 (2018)

    Article  Google Scholar 

  7. Zhao, J., Jing, X., Yan, Z., Pedrycz, W.: Network traffic classification for data fusion: a survey. Inf. Fusion 72, 22–47 (2021)

    Article  Google Scholar 

  8. Ding, W., Jing, X., Yan, Z., Yang, L.T.: A survey on data fusion in internet of things: towards secure and privacy-preserving fusion. Inf. Fusion 51, 129–144 (2019)

    Article  Google Scholar 

  9. Chen, Z., Li, W.: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Trans. Instrum. Meas. 66(7), 1693–1702 (2017)

    Article  Google Scholar 

  10. Jing, X., Yan, Z., Jiang, X., Pedrycz, W.: Network traffic fusion and analysis against DDoS flooding attacks with a novel reversible sketch. Inf. Fusion 51, 100–113 (2019)

    Article  Google Scholar 

  11. Jing, X., Zhao, J., Zheng, Q., Yan, Z., Pedrycz, W.: A reversible sketch-based method for detecting and mitigating amplification attacks. J. Netw. Comput. Appl. 142, 15–24 (2019)

    Article  Google Scholar 

  12. Shelke, P.M., Prasad, R.S.: Dbfs: Dragonfly Bayes Fusion System to detect the tampered JPEG image for forensic analysis. Evol. Intell. 5, 1–17 (2019)

    Google Scholar 

  13. Takruri, M., Abubakar, A.: Bayesian decision fusion for enhancing melanoma recognition accuracy. In: 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), IEEE, pp. 1–4. (2017)

  14. Tidriri, K., Tiplica, T., Chatti, N., Verron, S.: A generic framework for decision fusion in fault detection and diagnosis. Eng. Appl. Artif. Intell. 71, 73–86 (2018)

    Article  Google Scholar 

  15. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization of encrypted and VPN traffic using time-related. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), pp. 407–414. (2016)

  16. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. 24(3), 1999–2012 (2020)

    Article  Google Scholar 

  17. Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification: an overview. IEEE Commun. Mag. 57(5), 76–81 (2019)

    Article  Google Scholar 

  18. Zeng, Y., Gu, H., Wei, W., Guo, Y.: \(deep-full-range\): a deep learning based network encrypted traffic classification and intrusion detection framework. IEEE Access 7, 45182–45190 (2019)

    Article  Google Scholar 

  19. Chen, Z., He, K., Li, J., Geng, Y.: Seq2img: a sequence-to-image based approach towards ip traffic classification using convolutional neural networks. In: 2017 IEEE International Conference on Big Data (Big Data), IEEE, pp. 1271–1276. (2017)

  20. Höchst, J., Baumgärtner, L., Hollick, M., Freisleben, B.: Unsupervised traffic flow classification using a neural autoencoder. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), IEEE, pp. 523–526. (2017)

  21. Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z.: End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), IEEE, pp. 43–48. (2017)

  22. Wang, X., Chen, S., Su, J.: Automatic mobile app identification from encrypted traffic with hybrid neural networks. IEEE Access 8, 182065–182077 (2020)

    Article  Google Scholar 

  23. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Distiller: encrypted traffic classification via multimodal multitask deep learning. J. Netw. Comput. Appl. 183, 102–115 (2021)

    Google Scholar 

  24. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Toward effective mobile encrypted traffic classification through deep learning. Neurocomputing 409, 306–315 (2020)

    Article  Google Scholar 

  25. Aceto, G., Ciuonzo, D., Montieri, A., Pescapè, A.: Mimetic: mobile encrypted traffic classification using multimodal deep learning. Comput. Netw. 165(106), 944 (2019)

    Google Scholar 

  26. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Multi-classification approaches for classifying mobile app traffic. J. Netw. Comput. Appl. 103, 131–145 (2018)

    Article  Google Scholar 

  27. Tao, X., Kong, D., Wei, Y., Wang, Y.: A big network traffic data fusion approach based on fisher and deep auto-encoder. Information 7(2), 20 (2016)

    Article  Google Scholar 

  28. Meng, T., Jing, X., Yan, Z., Pedrycz, W.: A survey on machine learning for data fusion. Inf. Fusion 57, 115–129 (2020)

    Article  Google Scholar 

  29. Kuncheva, L.I., Rodríguez, J.J.: A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 38(2), 259–275 (2014)

    Article  Google Scholar 

  30. Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.Y., Sainath, T.: Deep learning for audio signal processing. IEEE J. Sel. Top. Signal Process. 13(2), 206–219 (2019)

    Article  Google Scholar 

  31. Wang, J., Fu, P., Gao, R.X.: Machine vision intelligence for product defect inspection based on deep learning and hough transform. J. Manuf. Syst. 51, 52–60 (2019)

    Article  Google Scholar 

  32. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

    Article  Google Scholar 

  33. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep cnn denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3929–3938. (2017)

  34. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), IEEE, pp. 712–717. (2017)

  35. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning—a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)

    Article  Google Scholar 

  36. Marir, N., Wang, H., Feng, G., Li, B., Jia, M.: Distributed abnormal behavior detection approach based on deep belief network and ensemble SVM using spark. IEEE Access 6, 59657–59671 (2018)

    Article  Google Scholar 

  37. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and verification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5777–5783 (2018)

    Article  MathSciNet  Google Scholar 

  38. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Beijing (2019)

  39. Group, M.W.: Mawi working group traffic archive. (2021). https://mawi.wide.ad.jp/mawi/

  40. Granger, T.: Cambridge’s nprobe project. (2021). http://www.cl.cam.ac.uk/research/srg/netos/projects/archive/nprobe/data/papers/sigmetrics/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, S., Ahmadi, M. & Rajabzadeh, A. Network Traffic Classification Using Deep Learning Networks and Bayesian Data Fusion. J Netw Syst Manage 30, 25 (2022). https://doi.org/10.1007/s10922-021-09639-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09639-z

Keywords

Navigation