Abstract
Modern big data analysis and business intelligence applications come with high resource demands, along with a requirement for large data transfer between storage and compute nodes. Since the available resources of a single data center might not be sufficient to host these applications, federated cloud systems present a promising solution. The objective of each cloud service provider in a federation is to maximize its own profit and to minimize its total operating cost. To achieve these objectives, spatial variation in the energy cost and bandwidth cost could be leveraged while allocating the workload. We propose a hierarchical approach for resource management in a federated cloud, catering to the requirements of each provider in the federation. We formulate the placement of a data-intensive applications as an optimization problem to minimize the total operating cost, including the energy and communication costs. We propose an algorithm to allocate the virtual components of a data-intensive application, in two phases; partitioning and mapping. While partitioning creates clusters of correlated nodes, mapping allocates the created clusters to data centers that minimize the total cost. Through extensive experiments in different scenarios, we demonstrate that the proposed algorithm achieves a significant reduction in the total operating cost.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Al Jawarneh, I.M., Bellavista, P., Corradi, A., Foschini, L., Montanari, R.: Big spatial data management for the Internet of Things: a survey. J. Netw. Syst. Manag. (2020). https://doi.org/10.1007/s10922-020-09549-6
Hajeer, M., Dasgupta, D.: Handling Big Data using a data-aware HDFS and evolutionary clustering technique. IEEE Trans. Big Data 5(2), 134–147 (2019). https://doi.org/10.1109/TBDATA.2017.2782785
Calcaterra, C., Carmenini, A., Marotta, A., Bucci, U., Cassioli, D.: MaxHadoop: An efficient scalable emulation tool to test SDN protocols in emulated Hadoop environments. J. Netw. Syst. Manag. (2020). https://doi.org/10.1007/s10922-020-09552-x
Pretto, G.R., Dalmazo, B.L., Marques, J.A., Wu, Z., Wang, X., Korkhov, V., Navaux, P.O.A., Gaspary, L.P.: Boosting HPC applications in the cloud through JIT traffic-aware path provisioning. In: Computational Science and Its Applications—ICCSA 2019. Lecture Notes in Computer Science, pp. 702–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_52
Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015). https://doi.org/10.1016/j.is.2014.07.006
Clemm, A., Zhani, M.F., Boutaba, R.: Network management 2030: operations and control of network 2030 services. J. Netw. Syst. Manag. (2020). https://doi.org/10.1007/s10922-020-09517-0
Li, P., Guo, S., Yu, S., Zhuang, W.: Cross-cloud MapReduce for big data. IEEE Trans. Cloud Comput. 8(2), 375–386 (2020). https://doi.org/10.1109/TCC.2015.2474385
Mashayekhy, L., Nejad, M.M., Grosu, D.: A trust-aware mechanism for cloud federation formation. IEEE Trans. Cloud Comput. (2019). https://doi.org/10.1109/TCC.2019.2911831
Ehsanfar, A., Grogan, P.T.: Auction-based algorithms for routing and task scheduling in federated networks. J. Netw. Syst. Manag. 28(2), 271–297 (2020). https://doi.org/10.1007/s10922-019-09506-y
Lee, C.A., Bohn, R.B., Michel, M.: The NIST Cloud Federation Reference Architecture. Tech. Rep. NIST SP 500-332. National Institute of Standards and Technology, Gaithersburg (2020). https://doi.org/10.6028/NIST.SP.500-332
Hadji, M., Zeghlache, D.: Mathematical programming approach for revenue maximization in cloud federations. IEEE Trans. Cloud Comput. 5(1), 99–111 (2017). https://doi.org/10.1109/TCC.2015.2402674
Middya, A.I., Ray, B., Roy, S.: Auction based resource allocation mechanism in federated cloud environment: TARA. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2952772
Deng, H., Huang, L., Xu, H., Liu, X., Wang, P., Fang, X.: Revenue maximization for dynamic expansion of geo-distributed cloud data centers. IEEE Trans. Cloud Comput. 8(3), 899–913 (2020). https://doi.org/10.1109/TCC.2018.2808351
Ray, B.K., Saha, A., Khatua, S., Roy, S.: Toward maximization of profit and quality of cloud federation: solution to cloud federation formation problem. J. Supercomput. 75(2), 885–929 (2019). https://doi.org/10.1007/s11227-018-2620-2
Darzanos, G., Koutsopoulos, I., Stamoulis, G.D.: Cloud federations: economics, games and benefits. IEEE/ACM Trans. Netw. 27(5), 2111–2124 (2019). https://doi.org/10.1109/TNET.2019.2943810
Venkatesh, G., Arunesh, K.: Map reduce for big data processing based on traffic aware partition and aggregation. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1799-6
Eugster, P., Jayalath, C., Kogan, K., Stephen, J.: Big data analytics beyond the single datacenter. Computer 50(6), 60–68 (2017). https://doi.org/10.1109/MC.2017.163
Cisco: Cisco Global Cloud Index, Forecast and Methodology, 2016–2021. White paper. Cisco System (2018). https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
Andrae, A.: Total consumer power consumption forecast. Nordic Digital Business Summit 10 (2017)
Forestiero, A., Mastroianni, C., Meo, M., Papuzzo, G., Sheikhalishahi, M.: Hierarchical approach for efficient workload management in geo-distributed data centers. IEEE Trans. Green Commun. Netw. 1(1), 97–111 (2017)
Ehsanfar, A., Grogan, P.T.: Mechanism design for exchanging resources in federated networks. J. Netw. Syst. Manag. 28(1), 108–132 (2020). https://doi.org/10.1007/s10922-019-09498-9
Najm, M., Tamarapalli, V.: Cost-efficient deployment of big data applications in federated cloud systems. In: 2019 11th International Conference on Communication Systems Networks (COMSNETS), pp 428–431 (2019). https://doi.org/10.1109/COMSNETS.2019.8711284
Ahmad, B., Maroof, Z., McClean, S., Charles, D., Parr, G.: Economic impact of energy saving techniques in cloud server. Clust. Comput. 23(2), 611–621 (2020). https://doi.org/10.1007/s10586-019-02946-w
Ismaeel, S., Karim, R., Miri, A.: Proactive dynamic virtual-machine consolidation for energy conservation in cloud data centres. J. Cloud Comput. 7(1), 10 (2018). https://doi.org/10.1186/s13677-018-0111-x
Tripathi, A., Pathak, I., Vidyarthi, D.P.: Modified dragonfly algorithm for optimal virtual machine placement in cloud computing. J. Netw. Syst. Manag. (2020). https://doi.org/10.1007/s10922-020-09538-9
Marcon, D.S., Neves, M.C., Oliveira, R.R., Bays, L.R., Boutaba, R., Gaspary, L.P., Barcellos, M.P.: IoNCloud: Exploring application affinity to improve utilization and predictability in datacenters. In: 2015 IEEE International Conference on Communications (ICC), pp. 5497–5503 (2015). https://doi.org/10.1109/ICC.2015.7249198
Qie, X., Jin, S., Yue, W.: An energy-efficient strategy for virtual machine allocation over cloud data centers. J. Netw. Syst. Manag. 27(4), 860–882 (2019). https://doi.org/10.1007/s10922-019-09489-w
Kumar, M., Sharma, S.C., Goel, S., Mishra, S.K., Husain, A.: Autonomic cloud resource provisioning and scheduling using meta-heuristic algorithm. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04955-y
Khosravi, A., Andrew, L.L.H., Buyya, R.: Dynamic VM placement method for minimizing energy and carbon cost in geographically distributed cloud data centers. IEEE Trans. Sustain. Comput. 2(2), 183–196 (2017). https://doi.org/10.1109/TSUSC.2017.2709980
Najm, M., Tamarapalli, V.: VM migration for profit maximization in federated cloud data centers. In: 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), pp. 882–884 (2020). https://doi.org/10.1109/COMSNETS48256.2020.9027429
Najm, M., Tamarapalli, V.: Inter-data center virtual machine migration in federated cloud. In: Proceedings of the 21st International Conference on Distributed Computing and Networking, p. 1 (2020)
Maenhaut, P.J., Volckaert, B., Ongenae, V., De Turck, F.: Resource management in a containerized cloud: status and challenges. J. Netw. Syst. Manag. 28(2), 197–246 (2020). https://doi.org/10.1007/s10922-019-09504-0
Kumar, M., Sharma, S.C., Goel, A., Singh, S.P.: A comprehensive survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. 143, 1–33 (2019). https://doi.org/10.1016/j.jnca.2019.06.006
Zhang, X., Li, K., Zhang, Y.: Optimising data access latencies of virtual machine placement based on greedy algorithm in datacentre. Int. J. Comput. Sci. Eng. 18(2), 186–194 (2019). https://doi.org/10.1504/IJCSE.2019.097945
Ferdaus, M.H., Murshed, M.M., Calheiros, R.N., Buyya, R.: An algorithm for network and data-aware placement of multi-tier applications in cloud data centers. CoRR (2017). abs/1706.06035
Shabeera, T., Kumar, S.M., Salam, S.M., Krishnan, K.M.: Optimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithm. Int. J. Eng. Sci. Technol. 20(2), 616–628 (2017). https://doi.org/10.1016/j.jestch.2016.11.006
Gu, L., Zeng, D., Li, P., Guo, S.: Cost minimization for big data processing in geo-distributed data centers. IEEE Trans. Emerg. Top. Comput. 2(3), 314–323 (2014)
Xiao, W., Bao, W., Zhu, X., Liu, L.: Cost-aware big data processing across geo-distributed datacenters. IEEE Trans. Parallel Distrib. Syst. 28(11), 3114–3127 (2017)
Deng, K., Ren, K., Zhu, M., Song, J.: A data and task co-scheduling algorithm for scientific cloud workflows. IEEE Trans. Cloud Comput. 8(2), 349–362 (2020). https://doi.org/10.1109/TCC.2015.2511745
Latif, S., Gilani, S.M.M., Ali, L., Iqbal, S., Liaqat, M.: Characterizing the architectures and brokering protocols for enabling clouds interconnection. Concurr. Comput. Pract. Experience 32(21), e5676 (2020)
Khorasani, N., Abrishami, S., Feizi, M., Esfahani, M.A., Ramezani, F.: Resource management in the federated cloud environment using Cournot and Bertrand competitions. Fut. Gener. Comput. Syst. 113, 391–406 (2020). https://doi.org/10.1016/j.future.2020.07.010
(2020) Virtual network pricing. https://azure.microsoft.com/en-in/pricing/details/virtual-network/. Accessed 25 July 2020
Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2016). https://doi.org/10.1109/COMST.2015.2481183
Singh, N., Rao, S.: Modeling and reducing power consumption in large it systems. In: Proceedings of IEEE International Systems Conference, pp. 178–183 (2010). https://doi.org/10.1109/SYSTEMS.2010.5482354
Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23(3), 567–619 (2015). https://doi.org/10.1007/s10922-014-9307-7
Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manag. 25(1), 122–158 (2017). https://doi.org/10.1007/s10922-016-9385-9
Yassine, A., Shirehjini, A.A.N., Shirmohammadi, S.: Bandwidth on-demand for multimedia big data transfer across geo-distributed cloud data centers. IEEE Trans. Cloud Comput. 8(4), 1189–1198 (2020). https://doi.org/10.1109/TCC.2016.2617369
(2020) Google cloud network pricing. https://cloud.google.com/compute/pricing#network. Accessed 25 July 2020
Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Fut. Gener. Comput. Syst. 29(3), 682–692 (2013). https://doi.org/10.1016/j.future.2012.08.015
Baker, T., Aldawsari, B., Asim, M., Tawfik, H., Maamar, Z., Buyya, R.: Cloud-SEnergy: a bin-packing based multi-cloud service broker for energy efficient composition and execution of data-intensive applications. Sustain. Comput. Inf. Syst. 19, 242–252 (2018). https://doi.org/10.1016/j.suscom.2018.05.011
Wolke, A., Tsend-Ayush, B., Pfeiffer, C., Bichler, M.: More than bin packing: Dynamic resource allocation strategies in cloud data centers. Inf. Syst. 52, 83–95 (2015). https://doi.org/10.1016/j.is.2015.03.003
Assis, M.R.M., Bittencourt, L.F.: MultiCloud tournament: a cloud federation approach to prevent free-riders by encouraging resource sharing. J. Netw. Comput. Appl. 166, 102694 (2020). https://doi.org/10.1016/j.jnca.2020.102694
Acknowledgements
The authors would like to thank Dr. Bala Prakasa Rao Killi for his help in the simulation part.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Najm, M., Tripathi, R., Alhakeem, M.S. et al. A Cost-Aware Management Framework for Placement of Data-Intensive Applications on Federated Cloud. J Netw Syst Manage 29, 25 (2021). https://doi.org/10.1007/s10922-021-09594-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10922-021-09594-9