Skip to main content
Log in

A Data-driven, Multi-setpoint Model Predictive Thermal Control System for Data Centers

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

This paper presents a system for jointly managing cooling units and workload assignment in modular data centers. The system aims to minimize power consumption while respecting temperature constraints, all in a thermally heterogeneous environment. Unlike traditional cooling controllers, which may over/under cool certain areas in the data center due to the use of a single setpoint, our framework does not have a single setpoint to satisfy. Instead, using a data-driven thermal model, the proposed system generates an optimal temperature map, the required temperature distribution matrix (RTDM), to be used by the controller, eliminating under/over cooling and improving power efficiency. The RTDM is the resulting temperature distribution when jointly considering workload assignment and cooling control. In addition, we propose the use of model predictive control (MPC) to regulate the operational variables of cooling units in a power-efficient fashion to comply with the RTDM. Within each iteration of the MPC loop, an optimization problem involving the thermal model is solved, and the underlying thermal model is updated. To prove the feasibility of the proposed power efficient system, it has been implemented on an actual modular data center in our facilities. Results from the implementation show the potential for considerable power savings compared to other control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shehabi, A., Smith, S.J., Masanet, E., Koomey, J.: Data center growth in the United States: decoupling the demand for services from electricity use. Environ. Res. Lett. 13(12), 1–12 (2018)

    Article  Google Scholar 

  2. Umair, S., Muneer, U., Zahoor, M.N., Malik, A.W.: “Mobile cloud computing future trends and opportunities,” in Managing and Processing Big Data in Cloud Computing, pp. 105–120, IGI Global, (2016)

  3. Klemick, H., Kopits, E., Wolverton, A.: How do data centers make energy-efficiency investment decisions? Qualitative evidence from focus groups and interviews. Energy Efficiency 12, 1359–1377 (June 2019)

    Article  Google Scholar 

  4. Varsamopoulos, G., Abbasi, Z., Gupta, S.K.: “Trends and effects of energy proportionality on server provisioning in data centers,” in 2010 International Conference on High Performance Computing, pp. 1–11, IEEE, (2010)

  5. Dai, J., Ohadi, M.M., Das, D., Pecht, M.G.: Optimum cooling of data centers. Springer, New York (2016)

    Google Scholar 

  6. Sawyer, R.: “Calculating total power requirements for data centers, whitepaper,” in Power Conversion, pp. 1–10, Schneider Electric’s Data Center Science Center, (2004)

  7. Loper, J., Parr, S.: Energy efficiency in data centers: a new policy frontier. Environ. Qual. Manag. 16(4), 83–97 (2007)

    Article  Google Scholar 

  8. Sharma, R.K., Bash, C.E., Patel, C.D., Friedrich, R.J., Chase, J.S.: Balance of power: dynamic thermal management for Internet data centers. IEEE Internet Comput. 9(1), 42–49 (2005)

    Article  Google Scholar 

  9. Chaudhry, M.T., Ling, T.C., Hussain, S.A., Manzoor, A.: Minimizing thermal stress for data center servers through thermal-aware relocation. Sci. World J. 2014, 1–9 (2014)

    Article  Google Scholar 

  10. Moore, J.D., Chase, J.S., Ranganathan, P.: “Weatherman: Automated, online and predictive thermal mapping and management for data centers,” in Proceedings of the 3rd International Conference on Autonomic Computing, ICAC 2006, Dublin, Ireland, 13-16 June 2006, pp. 155–164, IEEE Computer Society, (2006)

  11. Bash, C., Forman, G.: “Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center,” in 2007 USENIX Annual Technical Conference on Proceedings of the USENIX Annual Technical Conference, ECBS ’19, (USA), pp. 19:1–19:37, USENIX Association, (2007)

  12. Abbasi, Z., Varsamopoulos, G., Gupta, S.: “TACOMA: Server and workload management in Internet data centers considering cooling-computing power trade-off and energy proportionality,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 9, no. 2, pp. 11:1–11:37, (2012)

  13. Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: A cyber-physical approach. IEEE Trans. Parall. Distrib. Syst. 19, 1458–1472 (2008)

    Article  Google Scholar 

  14. Nadjahi, C., Louahlia, H., Lemasson, S.: A review of thermal management and innovative cooling strategies for data center. Sustain. Comput. 19, 14–28 (2018)

    Google Scholar 

  15. Chainer, T., Schultz, M., Parida, P., Gaynes, M.: Improving data center energy efficiency with advanced thermal management. IEEE Trans. Comp. Pack. Manuf. Technol. 7, 1228–1239 (2017)

    Google Scholar 

  16. Khalaj, A., Halgamuge, S.: A review on efficient thermal management of air-and liquid-cooled data centers: From chip to the cooling system. Appl. Energy 205, 1165–1188 (2017)

    Article  Google Scholar 

  17. Zervos, D.H.: “On-off thermostat based modulating air flow controller,” Dec 1985. Google (US) Patent 4,556,169. https://patents.google.com/patent/US4556169

  18. Durand-Estebe, B., Le Bot, C., Mancos, J.N., Arquis, E.: Data center optimization using PID regulation in CFD simulations. Energy and Buildings 66, 154–164 (2013)

    Article  Google Scholar 

  19. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control: PID controller design. Ind. Eng. Chem. Process Design Dev. 25(1), 252–265 (1986)

    Article  Google Scholar 

  20. Kheradmandi, M., Down, D.G., Moazamigoodarzi, H.: “Energy-efficient data-based zonal control of temperature for data centers,” in 2019 Tenth International Green and Sustainable Computing Conference (IGSC), pp. 1–7, Oct (2019)

  21. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice: a survey. Automatica 25(3), 335–348 (1989)

    Article  Google Scholar 

  22. Gao, J.: “Machine learning applications for data center optimization,” Google White Paper, pp. 1–13, 2014. https://research.google/pubs/pub42542.pdf

  23. Lazic, N., Boutilier, C., Lu, T., Wong, E., Roy, B., Ryu, M., Imwalle, G.: “Data center cooling using model-predictive control,” In Advances in Neural Information Processing Systems, pp. 3814–3823, (2018)

  24. Beghi, A., Lionello, M., Rampazzo, M.: “Efficient operation of indirect evaporative data center cooling systems via newton-like extremum-seeking control,” In 2019 IEEE Conference on Control Technology and Applications (CCTA), pp. 424–429, Aug (2019)

  25. Zhou, R., Bash, C., Wang, Z., McReynolds, A., Christian, T., Cader, T.: “Data center cooling efficiency improvement through localized and optimized cooling resources delivery,” ASME International Mechanical Engineering Congress and Exposition, vol. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D, pp. 1789–1796, 11 (2012)

  26. Feng, J.D., Chuang, F., Borrelli, F., Bauman, F.: Model predictive control of radiant slab systems with evaporative cooling sources. Energy Buildings 87, 199–210 (2015)

    Article  Google Scholar 

  27. Kelman, A., Borrelli, F.: Bilinear model predictive control of a HVAC system using sequential quadratic programming. IFAC Proc. Vol. 44(1), 9869–9874 (2011)

    Article  Google Scholar 

  28. Ma, Y., Borrelli, F., Hencey, B., Coffey, B., Bengea, S., Haves, P.: Model predictive control for the operation of building cooling systems. IEEE Trans. Control Syst. Technol. 20(3), 796–803 (2011)

    Google Scholar 

  29. Ma, Y., Kelman, A., Daly, A., Borrelli, F.: Predictive control for energy efficient buildings with thermal storage: Modeling, stimulation, and experiments. IEEE Contr. Syst. Mag. 32(1), 44–64 (2012)

    Article  Google Scholar 

  30. Gupta, R., Moazamigoodarzi, H., MirhoseiniNejad, S., Down, D.G., Puri, I.K.: Workload management for air-cooled data centers: an energy and exergy based approach. Energy 209, 118485 (2020)

    Article  Google Scholar 

  31. Bergman, T.L., Incropera, F.P., DeWitt, D.P., Lavine, A.S.: Fundamentals of heat and mass transfer. Wiley, New Jersey (2011)

    Google Scholar 

  32. Moazamigoodarzi, H., Pal, S., Ghosh, S., Puri, I.K.: Real-time temperature predictions in IT server enclosures. Int. J. Heat Mass Transf. 127, 890–900 (2018)

    Article  Google Scholar 

  33. Li, L., Liang, C.-J.M., Liu, J., Nath, S., Terzis, A., Faloutsos, C.: “Thermocast: A cyber-physical forecasting model for datacenters,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, (New York, NY, USA), pp. 1370–1378, ACM, 2011

  34. Grishina, A., Chinnici, M., Kor, A.-L., Rondeau, E., Georges, J.-P.: A machine learning solution for data center thermal characteristics analysis. Energies 13, 4378 (2020)

    Article  Google Scholar 

  35. MirhoseiniNejad, S., García, F.M., Badawy, G., Down, D.G.: “ALTM: Adaptive learning-based thermal model for temperature predictions in data centers,” in 2019 IEEE Sustainability through ICT Summit (StICT), pp. 1–6, IEEE, (2019)

  36. Mauro, D., Schmidt, K.: Essential SNMP: Help for System and Network Administrators. “ O’Reilly Media, Inc.”, (2005)

  37. “Display IPMI sensor information.” Ubuntu Manpage Repository, http://manpages.ubuntu.com/manpages/xenial/man8/ipmi-sensors.8.html

  38. Krout, E.: “Using top to monitor server performance.” [Online]. Available: https://www.linode.com/docs/uptime/monitoring/top-htop-iotop/, Updated: June, (2018)

  39. LaCroix, J.: Mastering Ubuntu Server: Master the art of deploying, configuring, managing, and troubleshooting Ubuntu Server 1804. Packt Publishing Ltd, Birmingham (2018)

    Google Scholar 

  40. MirhoseiniNejad, S., Moazamigoodarzi, H., Badawy, G., Down, D.G.: Joint data center cooling and workload management: a thermal-aware approach. Fut. Gen. Comput. Syst. 104, 174–186 (2020)

    Article  Google Scholar 

  41. Badea, A., Halunga, S., Luca, G.: “Energy optimization for the low data rate iot devices by using Manchester’s coded pseudo-random sequences,” In Proceedings of the 6th Conference on the Engineering of Computer Based Systems, ECBS ’19, (New York, NY, USA), pp. 19:1–19:4, ACM, 2019

  42. MirhoseiniNejad, S., Badawy, G., Down, D.G.: “EAWA: Energy-aware workload assignment in data centers,” in 2018 International Conference on High Performance Computing & Simulation (HPCS), pp. 260–267, IEEE, (2018)

  43. Zanin, A.C., De Gouvea, M.T., Odloak, D.: Integrating real-time optimization into the model predictive controller of the FCC system. Contr. Eng. Pract. 10(8), 819–831 (2002)

    Article  Google Scholar 

  44. De Souza, G., Odloak, D., Zanin, A.C.: Real time optimization (RTO) with model predictive control (MPC). Comput. Chem. Eng. 34(12), 1999–2006 (2010)

    Article  Google Scholar 

  45. Edwards, C., Spurgeon, S.: Sliding mode control: theory and applications. CRC Press, New York (1998)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by a Collaborative Research and Development Grant CRDPI506142-16 from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Down.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhoseininejad, S., Badawy, G. & Down, D.G. A Data-driven, Multi-setpoint Model Predictive Thermal Control System for Data Centers. J Netw Syst Manage 29, 7 (2021). https://doi.org/10.1007/s10922-020-09574-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-020-09574-5

Keywords

Navigation