Bottleneck Detection in Cloud Computing Performance and Dependability: Sensitivity Rankings for Hierarchical Models

Abstract

Cloud computing became widespread on IT industry, saving costs of acquisition and maintenance for companies of all sizes, and enabling fair management of resources according to the demand. Stochastic models can enable performance and dependability evaluation of cloud computing systems efficiently, what is needed for proper capacity planning. Distinct models may be combined in a hierarchy to address the huge number of components and levels of interaction among the system parts. Identification of bottlenecks in such composite models might be hard yet, due to the huge amount of input factors and variables which may interfere with the results. This paper proposes a method for bottleneck detection of computational systems represented with hierarchical models, that is remarkably applied in cloud computing systems. This is achieved through the composition of indices computed from lower level models in equations and solution methods of the top level model, for computing the sensitivity indices of all parameters with respect to a global system measure. A unified sensitivity ranking, comprising the composite indices, indicates the parameters with highest impact on output metrics. A case study supports the demonstration of accuracy and utility of our methodology. The study addresses a web service running on a private cloud with auto scaling mechanisms. The methods and algorithms presented here are helpful for decision-making when designing and managing cloud computing infrastructures, regarding incremental and architectural improvements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Depend. Sec. Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  2. 2.

    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37, 164–177 (2003)

    Article  Google Scholar 

  3. 3.

    Blake, J.T., Reibman, A.L., Trivedi, K.S.: Sensitivity analysis of reliability and performability measures for multiprocessor systems. In: Proceedings of the 1988 ACM SIGMETRICS conference on Measurement and modeling of computer systems, pp. 177–186. ACM, New York, NY, USA (1988). http://doi.acm.org/10.1145/55595.55616

  4. 4.

    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queuing Networks and Markov Chains: modeling and performance evaluation with computer science applications, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  5. 5.

    Callou, G., Maciel, P., Tutsch, D., Ferreira, Ja, Araújo, J., Souza, R.: Estimating sustainability impact of high dependable data centers: A comparative study between brazilian and us energy mixes. Computing 95(12), 1137–1170 (2013)

    Article  Google Scholar 

  6. 6.

    Campos, E., Matos, R., Maciel, P., Costa, I., Silva, F.A., Souza, F.: Performance evaluation of virtual machines instantiation in a private cloud. In: Proceedings of the 2015 IEEE World Congress on Services. SERVICES 2015, pp. 319–326. IEEE Computer Society (2015)

  7. 7.

    Chuob, S., Pokharel, M., Park, J.S.: Modeling and analysis of cloud computing availability based on eucalyptus platform for e-government data center. In: 2011 Fifth international conference on innovative mobile and internet services in ubiquitous computing (IMIS), pp. 289–296 (2011). https://doi.org/10.1109/IMIS.2011.135

  8. 8.

    Cloth, L., Katoen, J.P., Khattri, M., Pulungan, R.: Model checking markov reward models with impulse rewards. In: Proceedings of the 2005 International Conference on Dependable Systems and Networks, DSN ’05, pp. 722–731. IEEE Computer Society, Washington, DC, USA (2005). https://doi.org/10.1109/DSN.2005.64

  9. 9.

    Dantas, J., Matos, R., Araujo, J., Maciel, P.: An availability model for eucalyptus platform: An analysis of warm-standy replication mechanism. In: Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2012). Seoul, Korea (2012)

  10. 10.

    Dantas, J., Matos, R., Araujo, J., Maciel, P.: Models for dependability analysis of cloud computing architectures for eucalyptus platform. Int. Trans. Syst. Sci. Appl. 8, 13–25 (2012)

    Google Scholar 

  11. 11.

    Dantas, J., Matos, R., Araujo, J., Maciel, P.: Eucalyptus-based private clouds: availability modeling and comparison to the cost of a public cloud. Computing, pp. 1–20 (2015)

  12. 12.

    Eucalyptus: Official documentation for eucalyptus cloud (2014). Available on https://www.eucalyptus.com/docs/eucalyptus/4.0/

  13. 13.

    German, R.: Performance analysis of communication systems with non-markovian stochastic petri nets. Wiley, New York (2000)

    Google Scholar 

  14. 14.

    German, R., Mitzlaff, J.: Transient analysis of deterministic and stochastic petri nets with timenet. In: Lecture Notes in Computer Science Vol. 977: Quantitative Evaluation of Computing and Communication Systems, pp. 209–223 (1995)

  15. 15.

    Ghosh, R., Longo, F., Naik, V.K., Trivedi, K.S.: Modeling and performance analysis of large scale IaaS clouds. Future Gener. Comput. Syst. 29(5), 1216–1234 (2013)

    Article  Google Scholar 

  16. 16.

    Gokhale, S.S., Trivedi, K.S.: Reliability prediction and sensitivity analysis based on software architecture. In: 13th International Symposium on Software Reliability Engineering, 2002. Proceedings., pp. 64–75. IEEE (2002)

  17. 17.

    Goyal, D., Kumar, A., Saini, M., Joshi, H.: Reliability, maintainability and sensitivity analysis of physical processing unit of sewage treatment plant. SN Appl. Sci. 1(11), 1507 (2019)

    Article  Google Scholar 

  18. 18.

    Jain, R.: The art of computer systems performance analysis: techniques for experimental design, measurement, simulation and modeling. Wiley-Interscience, New York (1991)

    Google Scholar 

  19. 19.

    Kleinrock, L.: Queueing systems, vol. 1. Wiley, New York (1975)

    Google Scholar 

  20. 20.

    Kolmogorov, A.: Über die analytischen methoden in der wahrscheinlichkeitsrechnung. Springer-Verlag, Mathematische Annalen. Newyork (1931). (in german)

    Google Scholar 

  21. 21.

    Kuo, W., Zuo, M.: Optimal reliability modeling: principles and applications. Wiley, New York (2003)

    Google Scholar 

  22. 22.

    Liu, B., Chang, X., Han, Z., Trivedi, K., Rodríguez, R.J.: Model-based sensitivity analysis of iaas cloud availability. Future Generation Computer Systems 83, 1–13 (2018). https://doi.org/10.1016/j.future.2017.12.062. http://www.sciencedirect.com/science/article/pii/S0167739X17301796

  23. 23.

    Longo, F., Ghosh, R., Naik, V., Trivedi, K.: A scalable availability model for infrastructure-as-a-service cloud. In: Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN), pp. 335 –346 (2011)

  24. 24.

    Maciel, P., Trivedi, K.S., Matias, R., Kim, D.S.: Dependability modeling. In: Performance and Dependability in Service Computing: Concepts, Techniques and Research Directions. IGI Global, Hershey (2011)

  25. 25.

    Malhotra, M., Trivedi, K.S.: Power-hierarchy of dependability-model types. IEEE Trans. Reliab. 43(3), 493–502 (1994)

    Article  Google Scholar 

  26. 26.

    Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2, 93–122 (1984)

    Article  Google Scholar 

  27. 27.

    Matos, R.: Identification of availability and performance bottlenecks in cloud computing systems: An approach based on hierarchical models and sensitivity analysis. Ph.D. thesis, Universidade Federal de Pernambuco – UFPE, Recife, Brazil (2016)

  28. 28.

    Matos, R., Araujo, J., Oliveira, D., Maciel, P., Trivedi, K.: Sensitivity analysis of a hierarchical model of mobile cloud computing. Simul. Model. Pract. Theory 50, 151–164 (2014)

    Article  Google Scholar 

  29. 29.

    Matos, R., Dantas, J., Araujo, J., Trivedi, K.S., Maciel, P.: Redundant eucalyptus private clouds: availability modeling and sensitivity analysis. J. Grid Comput. 15(1), 1–22 (2017)

    Article  Google Scholar 

  30. 30.

    Matos, R.D.S., Maciel, P.R.M., Machida, F., Kim, D.S., Trivedi, K.S.: Sensitivity analysis of server virtualized system availability. IEEE Trans. Reliabil. 61(4), 994–1006 (2012). https://doi.org/10.1109/TR.2012.2220711

    Article  Google Scholar 

  31. 31.

    Matos, R.S., Maciel, P.R., Silva, R.M.: Qos-driven optimisation of composite web services: an approach based on grasp and analytical models. Int. J. Web Grid Serv. 9(3), 304–321 (2013)

    Article  Google Scholar 

  32. 32.

    Matos Júnior, R.d.S.: An automated approach for systems performance and dependability improvement through sensitivity analysis of markov chains. Master’s thesis, Universidade Federal de Pernambuco – UFPE, Recife, Brazil (2011)

  33. 33.

    Melo, R., Bezerra, M., Dantas, J., Matos, R., de Melo Filho, I., Oliveira, A., Feliciano, F., Maciel, P.: Sensitivity analysis techniques applied in video streaming service on eucalyptus cloud environments. J. Inform. Syst. Eng. Manag. 3(1), 02 (2018)

    Google Scholar 

  34. 34.

    Menascé, D.A., Almeida, V.A., Dowdy, L.W.: Performance by design: computer capacity planning by example. Prentice Hall PTR, London (2004)

    Google Scholar 

  35. 35.

    Mills, K., Filliben, J., Dabrowski, C.: An efficient sensitivity analysis method for large cloud simulations. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 724–731 (2011)

  36. 36.

    Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. 31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110

    Article  Google Scholar 

  37. 37.

    Muppala, J.K., Trivedi, K.S.: GSPN models: sensitivity analysis and applications. In: ACM-SE 28: Proceedings of the 28th annual Southeast regional conference, pp. 25–33. ACM, New York, NY, USA (1990). https://doi.org/10.1145/98949.98962

  38. 38.

    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  39. 39.

    Nguyen, T.A., Min, D., Choi, E., Tran, T.D.: Reliability and availability evaluation for cloud data center networks using hierarchical models. IEEE Access 7, 9273–9313 (2019). https://doi.org/10.1109/ACCESS.2019.2891282

    Article  Google Scholar 

  40. 40.

    O’Connor, P.P., Kleyner, A.: Practical reliability engineering, 5th edn. Wiley Publishing, New York (2012)

    Google Scholar 

  41. 41.

    Qin, J., Li, Z.: Reliability and sensitivity analysis method for a multistate system with common cause failure. Complexity 2019 (2019)

  42. 42.

    Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreir, J., Dantas, J., Lobo Junior, A., Alves, V., Maciel, P.: Mercury: An integrated environment for performance and dependability evaluation of general systems. In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference, DSN 2015. IEEE, Rio de Janeiro (2015)

  43. 43.

    Trivedi, K.S.: Probability and statistics with reliability, queuing, and computer science applications, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  44. 44.

    Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual machine live migration in clouds. Lecture Notes in Computer Science, New York, Springer-Verlag (2009)

  45. 45.

    Watson, J.F.I., Desrochers, A.: Applying generalized stochastic petri nets to manufacturing systems containing nonexponential transition functions. Syst. Man Cybern. IEEE Trans. 21(5), 1008–1017 (1991)

    Article  Google Scholar 

  46. 46.

    Wei, B., Lin, C., Kong, X.: Dependability modeling and analysis for the virtual data center of cloud computing. In: Proceedings of the 2011 IEEE International Conference on High Performance Computing and Communications, HPCC ’11, pp. 784–789. IEEE Computer Society, Washington, DC, USA (2011)

Download references

Acknowledgements

This study is funded by Army Research Office (Grant No. W911NF1810413).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rubens Matos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matos, R., Dantas, J., Araujo, E. et al. Bottleneck Detection in Cloud Computing Performance and Dependability: Sensitivity Rankings for Hierarchical Models. J Netw Syst Manage 28, 1839–1871 (2020). https://doi.org/10.1007/s10922-020-09562-9

Download citation

Keywords

  • Cloud computing
  • Analytical models
  • Dependability
  • Performance evaluation
  • Sensitivity analysis