Skip to main content

Analyzing Handover Performances of Mobility Management Protocols in Ultra-dense Networks


To deal with the exponential increase of mobile data traffic, ultra-dense network (UDN) has been evolved as a promising solution for the forthcoming fifth generation (5G) cellular networks. In UDN, a mobile terminal (MT) experiences frequent handovers due to limited coverage regions of the deployed small cells. Such frequent handovers cause increased packet loss and blocking rate if the handover latency is very high. The handover latency explicitly depends on the layer 3 handover mechanisms of upper layer mobility management protocols (MMPs) as well as handover execution mechanisms (HEMs) operating at layer 2. The HEMs also have significant impact on layer 3 handover latency. Despite such dependencies, existing handover performance evaluations of MMPs do not adequately consider the effect of HEMs. In this work, we analyze the handover performances of different class of MMPs considering the effect of underlying HEMs in terms of handover latency, handover packet loss and handover blocking rate. For analysis purpose, we consider a network layer MMP namely fast mobile IPv6, a transport layer MMP namely seamless IP diversity based generalized mobility architecture, and a distributed mobility management protocol as candidate MMPs. Here hard and semisoft handovers have been considered as underlying HEMs. Our analysis reveal the conditional effect of underlying HEMs on the handover performances of upper layer MMPs. Further, based on such analysis, we prioritize among different combinations of MMPs and HEMs employing analytic hierarchy process. Such priority assignment would serve as a protocol selector in UDN scenario.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. Li, Y., Cao, B., Wang, C.: Handover schemes in heterogeneous lte networks: challenges and opportunities. IEEE Wirel. Commun. 23(2), 112–117 (2016).

    Article  Google Scholar 

  2. Habbal, A., Goudar, S.I., Hassan, S.: Context-aware radio access technology selection in 5g ultra dense networks. IEEE Access 5, 6636–6648 (2017).

    Article  Google Scholar 

  3. Kamel, M., Hamouda, W., Youssef, A.: Ultra-dense networks: a survey. IEEE Commun. Surv. Tutor. 18(4), 2522–2545 (2016).

    Article  Google Scholar 

  4. Ahmad, R., Sundararajan, E.A., Othman, N.E., Ismail, M.: Handover in LTE-advanced wireless networks: state of art and survey of decision algorithm. Telecommun. Syst. 66(3), 533–558 (2017).

    Article  Google Scholar 

  5. Lee, J., Bonnin, J., You, I., Chung, T.: Comparative handover performance analysis of ipv6 mobility management protocols. IEEE Trans. Ind. Electron. 60(3), 1077–1088 (2013).

    Article  Google Scholar 

  6. Fu, S., Ma, L., Atiquzzaman, M., Lee, Y.J.: Architecture and performance of sigma: a seamless mobility architecture for data networks. In: IEEE International Conference on Communications, vol. 5, pp. 3249–3253 (2005).

  7. Bernardos, C.J., Oliva, A., Giust, F.: A pmipv6-based solution for distributed mobility management. In: IETF Draft, draft-bernardos-dmm-pmip-09 (2017).

  8. Tayyab, M., Gelabert, X., Jantti, R.: A survey on handover management: from LTE to NR. IEEE Access. 7, 118907–118930 (2019).

    Article  Google Scholar 

  9. Lee, H., Son, H., Lee, S.: Semisoft handover gain analysis over ofdm-based broadband systems. IEEE Trans. Veh. Technol. 58(3), 1443–1453 (2009).

    Article  Google Scholar 

  10. Lee, J., Ernst, T., Chung, T.: Cost analysis of IP mobility management protocols for consumer mobile devices. IEEE Trans. Consum. Electron. 56(2), 1010–1017 (2010).

    Article  Google Scholar 

  11. Ghosh, S.K., Ghosh, S.C.: An analytical framework for throughput analysis of real time applications in all-ip networks. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 508–515 (2017).

  12. Ahmed, N., Rikli, N.: A QoS based AHP algorithm for the vertical handover between heterogeneous wireless networks. In: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), pp. 1–6 (2017).

  13. The analytic hierarchy process.

  14. Hwang, J., Lee, J., Choi, N., Yoo, C.: Havs: hybrid adaptive video streaming for mobile devices. IEEE Trans. Consum. Electron. 60(2), 210–216 (2014).

    Article  Google Scholar 

  15. Rodríguez, D.Z., Rosa, R.L., Costa, E.A., Abrahão, J., Bressan, G.: Video quality assessment in video streaming services considering user preference for video content. IEEE Trans. Consum. Electron. 60(3), 436–444 (2014).

    Article  Google Scholar 

  16. Chang, J., Li, Y., Feng, S., Wang, H., Sun, C., Zhang, P.: A fractional soft handover scheme for 3gpp lte-advanced system. In: 2009 IEEE International Conference on Communications Workshops, pp. 1–5 (2009).

  17. Wang, H., Rosa, C., Pedersen, K.I.: Dual connectivity for lte-advanced heterogeneous networks. Wirel. Netw. 22(4), 1315–1328 (2016).

    Article  Google Scholar 

  18. Kundu, P., Ghosh, S.K., Sardar, B.: Performance analysis of SINEMO and nemo BSP for vehicle-infrastructure-vehicle communications. In: 2014 Applications and Innovations in Mobile Computing (AIMoC), pp. 75–80 (2014).

  19. Ghosh, S.K., Kundu, P., Sardar, B., Saha, D.: An extension of on-board TCP (OBTCP) for satellite-terrestrial hybrid networks. In: 2014 Fourth International Conference of Emerging Applications of Information Technology, pp. 146–151 (2014).

  20. Do, T., Kim, Y.: Design and performance analysis of an energy-efficient uplink carrier aggregation scheme. Wirel. Netw. 21(7), 2303–2314 (2015)

    Article  Google Scholar 

  21. Carmona-Murillo, J., Friderikos, V., Sánchez, J.L.G.: A hybrid DMM solution and trade-off analysis for future wireless networks. Comput. Netw. 133, 17–32 (2018).

    Article  Google Scholar 

  22. Khadraoui, Y., Lagrange, X., Gravey, A.: Very tight coupling between LTE and wifi: from theory to practice. In: 2016 Wireless Days (WD), pp. 1–3 (2016).

  23. Lagrange, X.: Very tight coupling between LTE and Wi-Fi for advanced offloading procedures. In: 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 82–86 (2014).

  24. Bettstetter, C.: Smooth is better than sharp: a random mobility model for simulation of wireless networks. In: Proceedings of the 4th ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWIM ’01, pp. 19–27. ACM, New York, NY, USA (2001).

  25. Yang, S., Zhou, H., et al.: Ship: cross-layer mobility management scheme based on session initiation protocol and host identity protocol. Telecommun. Syst. 42, 5–15 (2009).

    Article  Google Scholar 

  26. Bouras, C., Diles, G., Kokkinos, V., Kontodimas, K., Papazois, A.: A simulation framework for evaluating interference mitigation techniques in heterogeneous cellular environments. Wirel. Pers. Commun. 77(2), 1213–1237 (2014).

    Article  Google Scholar 

  27. Piro, G., Grieco, L.A., Boggia, G., Capozzi, F., Camarda, P.: Simulating LTE cellular systems: an open-source framework. IEEE Trans. Veh. Technol. 60(2), 498–513 (2011)

    Article  Google Scholar 

  28. Chang, B., Chen, J.: Cross-layer-based adaptive vertical handoff with predictive rss in heterogeneous wireless networks. IEEE Trans. Veh. Technol. 57(6), 3679–3692 (2008).

    Article  Google Scholar 

  29. Capozzi, F., Piro, G., Grieco, L.A., Boggia, G., Camarda, P.: Downlink packet scheduling in lte cellular networks: key design issues and a survey. IEEE Commun. Surv. Tutor. 15(2), 678–700 (2013).

    Article  Google Scholar 

  30. Zahran, A.H., Liang, B., Saleh, A.: Signal threshold adaptation for vertical handover in heterogeneous wireless networks. Mob. Netw. Appl. 11, 625–640 (2006).

    Article  Google Scholar 

  31. Hanzaz, Z., Schotten, H.D.: Analysis of effective SINR mapping models for MIMO OFDM in LTE system. In: 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1509–1515 (2013).

  32. Francis, J., Mehta, N.B.: EESM-based link adaptation in OFDM: modeling and analysis. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 3703–3708 (2013).

  33. Liu, F., Zheng, K., Xiang, W., Zhao, H.: Design and performance analysis of an energy-efficient uplink carrier aggregation scheme. IEEE J. Sel. Areas Commun. 32(2), 197–207 (2014).

    Article  Google Scholar 

  34. Gong, D., Yang, Y.: AP association in 802.11n WLANS with heterogeneous clients. In: 2012 Proceedings IEEE INFOCOM, pp. 1440–1448 (2012).

  35. Ghosh, S.K.: Github link (11th March, 2020).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sasthi C. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Ghosh, S.C. Analyzing Handover Performances of Mobility Management Protocols in Ultra-dense Networks. J Netw Syst Manage 28, 1427–1452 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Ultra-dense networks
  • Handover execution mechanisms
  • Mobility management protocols
  • Performance analysis
  • Analytic hierarchy process