Skip to main content

Advertisement

Log in

Security Aware Multipath Routing Protocol for WMSNs for Minimizing Effect of Compromising Attacks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In Multimedia Sensor Networks (WMSNs) the devices are interconnected in the wireless manner that is able to ubiquitously retrieve multimedia content such as video and audio streams, still images, and scalar sensor data from environments. Many research works have been undertaken to enhance the quality of multimedia contents and energy consumption, but not security. Till, security problems are critical issue in WMSNs. Trust inference is one of the methods that solve security problems in wireless sensor networks (WSNs) and mobile ad hoc networks (MANET). In this paper, we propose an energy efficient trusted cluster (E2TC) based routing protocol for WMSNs for overcome multi-objective problems, which can eventually maximize the network lifetime. The proposed routing protocol consist of two algorithms, first the multi-dimension differential evolution based trust (MDET) inference model used to compute trust value for each node in the network, then the energy efficient cluster formation is performed using load balance enhanced chemical reaction optimization (LBCRO) algorithm. The routing path between the source nodes to destination nodes framed by computed trust values. The result obtained through Network simulator tool and shows that the proposed routing protocol performs better than existing protocols in terms of energy consumption, QoS metrics, and network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Czarlinska, A., Kundur, D.: Reliable event-detection in wireless visual sensor networks through scalar collaboration and game-theoretic consideration. IEEE Trans. Multimed. 10(5), 675–690 (2008)

    Article  Google Scholar 

  2. La, H.M., Sheng, W.: Distributed sensor fusion for scalar field mapping using mobile sensor networks. IEEE Trans. Cybern. 43(2), 766–778 (2013)

    Article  Google Scholar 

  3. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: Wireless multimedia sensor networks: applications and testbeds. Proc. IEEE 96(10), 1588–1605 (2008)

    Article  Google Scholar 

  4. Huang, H., Gong, T., Chen, P., Malekian, R., Chen, T.: Secure two-party distance computation protocol based on privacy homomorphism and scalar product in wireless sensor networks. Tsinghua Sci. Technol. 21(4), 385–396 (2016)

    Article  Google Scholar 

  5. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large wireless sensor networks. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications—WSNA ‘02 (2002)

  6. Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in wireless sensor networks: theory and practical solutions. Wirel. Netw. 8(5), 443–454 (2002)

    Article  MATH  Google Scholar 

  7. Chan, E., Han, S.: Energy efficient residual energy monitoring in wireless sensor networks. Int. J. Distrib. Sens. Netw. 5(6), 748–770 (2009)

    Article  Google Scholar 

  8. Narula, P., Dhurandher, S.K., Misra, S., Woungang, I.: Security in mobile ad-hoc networks using soft encryption and trust-based multi-path routing. Comput. Commun. 31(4), 760–769 (2008)

    Article  Google Scholar 

  9. Refaei, M.T., DaSilva, L.A., Eltoweissy, M., Nadeem, T.: Adaptation of reputation management systems to dynamic network conditions in ad hoc networks. IEEE Trans. Comput. 59(5), 707–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Zhou, F., Du, J.: LDTS: a lightweight and dependable trust system for clustered wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 8(6), 924–935 (2013)

    Article  Google Scholar 

  11. Basilico, N., Gatti, N., Monga, M., Sicari, S.: Security games for node localization through verifiable multilateration. IEEE Trans. Dependable Secure Comput. 11(1), 72–85 (2014)

    Article  Google Scholar 

  12. Kundur, D., Luh, W., Okorafor, U.N., Zourntos, T.: Security and privacy for distributed multimedia sensor networks. Proc. IEEE 96(1), 112–130 (2008)

    Article  Google Scholar 

  13. Wang, H.: Communication-resource-aware adaptive watermarking for multimedia authentication in wireless multimedia sensor networks. J. Supercomput. 64(3), 883–897 (2010)

    Article  Google Scholar 

  14. Newell, A., Akkaya, K.: Distributed collaborative camera actuation for redundant data elimination in wireless multimedia sensor networks. Ad Hoc Netw. 9(4), 514–527 (2011)

    Article  Google Scholar 

  15. Zhang, Y., Li, X., Yang, J., Liu, Y., Xiong, N., Vasilakos, A.: A real-time dynamic key management for hierarchical wireless multimedia sensor network. Multimed. Tools Appl. 67(1), 97–117 (2012)

    Article  Google Scholar 

  16. Xiang, T., Yu, C., Chen, F.: Secure MQ coder: an efficient way to protect JPEG 2000 images in wireless multimedia sensor networks. Signal Process. Image Commun. 29(9), 1015–1027 (2014)

    Article  Google Scholar 

  17. Guerrero-Zapata, M., Zilan, R., Barceló-Ordinas, J.M., Bicakci, K., Tavli, B.: The future of security in wireless multimedia sensor networks. Telecommun. Syst. 45(1), 77–91 (2009)

    Article  Google Scholar 

  18. Lin, Q., Wang, R., Ye, N., Wang, Z.: Energy efficient distributed steganography for secure communication in wireless multimedia sensor networks. J. Electron. 30(1), 9–16 (2013)

    Google Scholar 

  19. Sun, Y., Luo, H., Das, S.K.: A trust-based framework for fault-tolerant data aggregation in wireless multimedia sensor networks. IEEE Trans. Dependable Secure Comput. 9(6), 785–797 (2012)

    Article  Google Scholar 

  20. Ghadi, M., Laouamer, L., Moulahi, T.: Securing data exchange in wireless multimedia sensor networks: perspectives and challenges. Multimed. Tools Appl. 75(6), 3425–3451 (2015)

    Article  Google Scholar 

  21. Deebak, B.D.: Secure and efficient mutual adaptive user authentication scheme for heterogeneous wireless sensor networks using multimedia client–server systems. Wirel. Pers. Commun. 87(3), 1013–1035 (2015)

    Article  Google Scholar 

  22. Sun, Y., Ma, H., Liu, L., Zheng, Y.E.: ASAR: an ant-based service-aware routing algorithm for multimedia sensor networks. Front. Electr. Electron. Eng. China 3(1), 25–33 (2008)

    Article  Google Scholar 

  23. Li, Z.Y., Wang, R.C.: Load balancing-based hierarchical routing algorithm for wireless multimedia sensor networks. J. China Univ. Posts Telecommun. 17, 51–59 (2010)

    Article  Google Scholar 

  24. Shu, L., Zhang, Y., Yang, L.T., Wang, Y., Hauswirth, M., Xiong, N.: TPGF: geographic routing in wireless multimedia sensor networks. Telecommun. Syst. 44(1–2), 79–95 (2009)

    Google Scholar 

  25. Cobo, L., Quintero, A., Pierre, S.: Ant-based routing for wireless multimedia sensor networks using multiple QoS metrics. Comput. Netw. 54(17), 2991–3010 (2010)

    Article  Google Scholar 

  26. Lin, K., Chen, M.: Research on energy efficient fusion-driven routing in wireless multimedia sensor networks. EURASIP J. Wirel. Commun. Netw. 2011(1), 142 (2011)

    Article  Google Scholar 

  27. Kim, J.M., Seo, H.S., Kwak, J.: Routing protocol for heterogeneous hierarchical wireless multimedia sensor networks. Wirel. Pers. Commun. 60(3), 559–569 (2011)

    Article  Google Scholar 

  28. Kandris, D., Tsagkaropoulos, M., Politis, I., Tzes, A., Kotsopoulos, S.: Energy efficient and perceived QoS aware video routing over wireless multimedia sensor networks. Ad Hoc Netw. 9(4), 591–607 (2011)

    Article  Google Scholar 

  29. Li, B.Y., Chuang, P.J.: Geographic energy-aware non-interfering multipath routing for multimedia transmission in wireless sensor networks. Inf. Sci. 249, 24–37 (2013)

    Article  Google Scholar 

  30. Huang, H., Cao, X., Wang, R., Wen, Y.: A QoS-aware routing algorithm based on ant-cluster in wireless multimedia sensor networks. Sci. China Inf. Sci. 57(10), 1–16 (2014)

    Google Scholar 

  31. Shen, H., Bai, G., Tang, Z., Zhao, L.: QMOR: QoS-aware multi-sink opportunistic routing for wireless multimedia sensor networks. Wirel. Pers. Commun. 75(2), 1307–1330 (2013)

    Article  Google Scholar 

  32. Magaia, N., Horta, N., Neves, R., Pereira, P.R., Correia, M.: A multi-objective routing algorithm for wireless multimedia sensor networks. Appl. Soft Comput. 30, 104–112 (2017)

    Article  Google Scholar 

  33. Han, L., Sun, S., Joo, B., Jin, X., Han, S.: QoS-aware routing mechanism in OpenFlow-enabled wireless multimedia sensor networks. Int. J. Distrib. Sens. Netw. 12(7), 9378120 (2016)

    Article  Google Scholar 

  34. Misra, S., Mali, G., Mondal, A.: Distributed topology management for wireless multimedia sensor networks: exploiting connectivity and cooperation. Int. J. Commun. Syst. 28(7), 1367–1386 (2014)

    Article  Google Scholar 

  35. Mali, G., Misra, S.: TRAST: trust-based distributed topology management for wireless multimedia sensor networks. IEEE Trans. Comput. 65(6), 1978–1991 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, H., Zhang, L.: A discrete hybrid differential evolution algorithm for solving integer programming problems. Eng. Optim. 46(9), 1238–1268 (2013)

    Article  MathSciNet  Google Scholar 

  37. Shahid, N., Naqvi, I.H., Qaisar, S.B.: Characteristics and classification of outlier detection techniques for wireless sensor networks in harsh environments: a survey. Artif. Intell. Rev. 43(2), 193–228 (2012)

    Article  Google Scholar 

  38. Bechikh, S., Chaabani, A., Said, L.B.: An efficient chemical reaction optimization algorithm for multi objective optimization. IEEE Trans. Cybern. 45(10), 2051–2064 (2015)

    Article  Google Scholar 

  39. Heinzleman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy efficient communication protocol for wireless micro sensor networks. In: Proceedings of the 33rd Hawaii International Conference on System Sciences, p. 10 (2000)

  40. Wright, S., Nocedal, J.: Numerical Optimization vol. 35, no. (67–68), p. 7. Springer Science, Berlin (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ranjith Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjith Kumar, A., Sivagami, A. Security Aware Multipath Routing Protocol for WMSNs for Minimizing Effect of Compromising Attacks. J Netw Syst Manage 27, 573–599 (2019). https://doi.org/10.1007/s10922-018-9477-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-018-9477-9

Keywords

Navigation