Advertisement

Journal of Network and Systems Management

, Volume 24, Issue 3, pp 449–469 | Cite as

Constructing Dependable Smart Grid Networks using Network Functions Virtualization

  • Michael Niedermeier
  • Hermann de Meer
Article

Abstract

Smart meters enable a fine-granular monitoring of power consumption and distributed power production in costumers’ premises, which are used to predict the power requirements for the near future. The goals are to offer more security of supply as well as to minimize the power requirement estimation errors. However, to benefit from this information, the communication infrastructure that transmits the energy-related data needs to fulfill stringent requirements with respect to dependability, while remaining monetarily feasible. This paper discusses the usage of network function virtualization (NFV) technologies and constructs a virtual advanced metering infrastructure (AMI) network to transmit energy-related information in a dependable and cost-effective way. After the discussion of dependability requirements of AMI and the shortcomings of current approaches, the reliability and availability of a new architecture based on NFV is analyzed using analysis. Finally, a cost model is developed to compare the Virtual Network Function approach to current AMIs.

Keywords

Advanced metering infrastructure Network function virtualization Virtualization Dependability Costs 

Notes

Acknowledgments

The research leading to these results was supported by the “Bavarian State Ministry of Education, Science and the Arts” as part of the FORSEC research association and by the European Commission’s Project No. 608090, HyRiM (Hybrid Risk Management for Utility Networks) under the 7th Framework Programme (FP7-SEC-2013-1).

References

  1. 1.
    Eckert, C., Krauß, C., Schoo, P.: Sicherheit im Smart Grid—Eckpunkte für ein Energieinformationsnetz. Stiftung-Verbundkolleg/Projekt Newise Nr. 90. https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/sr90_sicherheit_im_energieinformationsnetz_gesamt.pdf (2011)
  2. 2.
    Lv, P., Wang, X., Yang, Y., Ming, X.: Network virtualization for smart grid communications. IEEE Syst. J. 8(2), 471–482 (2014)CrossRefGoogle Scholar
  3. 3.
    Varaiya, P.P., Wu, F.F., Bialek, J.W.: Smart operation of smart grid: risk-limiting dispatch. Proc. IEEE 99(1), 40–57 (2011)CrossRefGoogle Scholar
  4. 4.
    Okabayashi, V.H., Ribeiro, I.C.G., Passos, D.M. and Albuquerque C.V.N.: A resilient dynamic gateway selection algorithm based on quality aware metrics for smart grids. In: Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’15, pp. 91–98. ACM, New York, NY (2005)Google Scholar
  5. 5.
    Pinnaka, S., Yarlagadda R. and Cetinkaya, E.K.: Modelling robustness of critical infrastructure networks. In: 2015 11th International Conference on the Design of Reliable Communication Networks (DRCN), pp. 95–98 (2015)Google Scholar
  6. 6.
    Kaitovic, I., Lukovic, S. and Malek, M.: Unifying dependability of critical infrastructures: electric power system and ICT: concepts, figures of merit and taxonomy. In: 2015 IEEE 21st Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 50–59 (2015)Google Scholar
  7. 7.
    Xiang, M., Tauch, S. and Liu, W.: Dependability and resource optimation analysis for smart grid communication networks. In: 2014 IEEE Fourth International Conference on Big Data and Cloud Computing (BdCloud), pp. 676–681 (2014)Google Scholar
  8. 8.
    Moslehi, K., Kumar, R.: A reliability perspective of the smart grid. IEEE Trans. Smart Grid 1(1), 57–64 (2010)CrossRefGoogle Scholar
  9. 9.
    Liberatore, V., Al-Hammouri, A.: Smart grid communication and co-simulation. In 2011 IEEE Energytech, pp. 1–5 (2011)Google Scholar
  10. 10.
    Xin, Y., Baldine, I., Chase, J., Beyene, T., Parkhurst, B. and Chakrabortty, A.: Virtual smart grid architecture and control framework. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 1–6 (2011)Google Scholar
  11. 11.
    Berl, A., Niedermeier, M., Fischer, A., de Meer, H., Hutchison, D.: Virtual energy information network: a resilience perspective. e & i Elektrotechnik und Informationstechnik 130(4–5), 121–126 (2013)CrossRefGoogle Scholar
  12. 12.
    Yu, R., Xue, G., Kilari, V.T., Zhang, X.: Network function virtualization in the multi-tenant cloud. IEEE Netw. 29(3), 42–47 (2015)CrossRefGoogle Scholar
  13. 13.
    Cerroni, W., Callegati, F.: Live migration of virtual network functions in cloud-based edge networks. In: 2014 IEEE International Conference on Communications (ICC), pp. 2963–2968 (2014)Google Scholar
  14. 14.
    Cotroneo, D., De Simone, L., Iannillo, A.K., Lanzaro, A., Natella, R., Fan, J. and Ping, W.: Network function virtualization: challenges and directions for reliability assurance. In: 2014 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 37–42 (2014)Google Scholar
  15. 15.
    Cotroneo, D., De Simone, L., Iannillo, A.K., Lanzaro, A. and Natella, R.: Dependability evaluation and benchmarking of network function virtualization infrastructures. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–9 (2015)Google Scholar
  16. 16.
    Aydeger, A., Akkaya, K. and Selcuk Uluagac, A.: SDN-based resilience for smart grid communications. In: 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), pp. 31–33 (2015)Google Scholar
  17. 17.
    Rinaldi, S., Ferrari, P., Brandao, D. and Sulis, S.: Software defined networking applied to the heterogeneous infrastructure of smart grid. In: 2015 IEEE world conference on factory communication systems (WFCS), pp. 1–4 (2015)Google Scholar
  18. 18.
    Dorsch, N., Kurtz, F., Georg, H., Hagerling, C. and Wietfeld, C.: Software-defined networking for smart grid communications: applications, challenges and advantages. In: 2014 IEEE international conference on smart grid communications (SmartGridComm), pp. 422–427 (2014)Google Scholar
  19. 19.
    Pfeiffenberger, T., Du, J.L., Bittencourt Arruda, P. and Anzaloni, A.: Reliable and flexible communications for power systems: fault-tolerant multicast with SDN/OpenFlow. In: 2015 7th International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–6 (2015)Google Scholar
  20. 20.
    Laprie, J.-C.: Dependable computing and fault tolerance: concepts and terminology. In: Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, Highlights from Twenty-Five Years, pp. 2–11 (1995)Google Scholar
  21. 21.
    Berrio, L., Zuluaga, C.: Concepts, standards and communication technologies in smart grid. In: 2012 IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), pp. 1–6 (2012)Google Scholar
  22. 22.
    Wikstrom, P., Terens, L.A., Kobi, H.: Reliability, availability, and maintainability of high-power variable-speed drive systems. IEEE Trans. Ind. Appl. 36(1), 231–241 (2000)CrossRefGoogle Scholar
  23. 23.
    Luan, W., Sharp, D., Lancashire, S.: Smart grid communication network capacity planning for power utilities. In: 2010 IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–4 (2010)Google Scholar
  24. 24.
    Keshav, S., Rosenberg, C.: How internet concepts and technologies can help green and smarten the electrical grid. In: Proceedings of the First ACM SIGCOMM Workshop on Green Networking, Green Networking ’10, pp. 35–40. ACM, New York, NY, USA (2010)Google Scholar
  25. 25.
    Network Functions Virtualisation (NFV); Use Cases. Technical report, ETSI GS NFV 001 V1.1.1 (2013-10) (2013)Google Scholar
  26. 26.
    Chiosi, M., Clarke, D., Willis, P., Feger, J., Bugenhagen, M., Khan, W., Fargano, M., Chen, C., Huang, J., Benitez, J., Michel, U., Damker, H., Ogaki, K., Fukui, M., Shimano, K., Delisle, D., Loudier, Q., Kolias, C., Guardini, I., Demaria, E., López, D., Salguero, Ramón, F.J., Ruhl, F. and Sen, P.: Network functions virtualisation—introductory white paper. In: SDN and OpenFlow World Congress (2012)Google Scholar
  27. 27.
    Bronstein, Z., Shraga, E.: NFV virtualisation of the home environment. In: 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), pp. 899–904 (2014)Google Scholar
  28. 28.
    Goel, A., Graves, R.J.: Electronic system reliability: collating prediction models. IEEE Trans. Device Mater. Reliab. 6(2), 258–265 (2006)CrossRefGoogle Scholar
  29. 29.
    Chillarege, R., Biyani, S. and Rosenthal, J.: Measurement of failure rate in widely distributed software. In: Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers, pp. 424–433 (1995)Google Scholar
  30. 30.
    Marashi, K. and Sarvestani, S.S.: Towards comprehensive modeling of reliability for smart grids: requirements and challenges. In: 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering (HASE), pp. 105–112 (2014)Google Scholar
  31. 31.
    Albasrawi, M.N., Jarus, N., Joshi, K.A. and Sarvestani, S.S.: Analysis of reliability and resilience for smart grids. In: 2014 IEEE 38th Annual Computer Software and Applications Conference (COMPSAC), pp. 529–534 (2014)Google Scholar
  32. 32.
    Fawaz, A., Berthier, R. and Sanders, W.H.: Cost modeling of response actions for automated response and recovery in AMI. In: IEEE Third International Conference on Smart Grid Communications, SmartGridComm 2012, Tainan, Taiwan, Nov. 5–8, pp. 348–353 (2012)Google Scholar
  33. 33.
    Wu, C.X., Chung, C.Y., Wen, F.S., Du, D.Y.: Reliability/cost evaluation with PEV and wind generation system. IEEE Trans. Sustain. Energy 5(1), 273–281 (2014)CrossRefGoogle Scholar
  34. 34.
    Niyato, D., Wang, Ping, Hossain, E.: Reliability analysis and redundancy design of smart grid wireless communications system for demand side management. IEEE Wirel. Commun. 19(3), 38–46 (2012)CrossRefGoogle Scholar
  35. 35.
    The NETL Modern Grid Strategy Powering our 21st-Century Economy: Advanced Metering Infrastructure. Technical report, U.S. Department of Energy, National Energy Technology (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of PassauPassauGermany

Personalised recommendations