Skip to main content
Log in

End-to-End Resource Management for Federated Delivery of Multimedia Services

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

References

  1. Amigo, I., Belzarena, P., Larroca, F., Vaton, S.: Network bandwidth allocation with end-to-end QoS constraints and revenue sharing in multi-domain federations. In: Proceedings of the 7th International Conference on Internet Charging and QoS Technologies, pp. 50–62 (2011). doi:10.1007/978-3-642-24547-3_6

  2. Serrano, M., van der Meer, S., Holum, V., Murphy, J., Strassner, J.: Federation, a matter of autonomic management in the Future Internet. In: Proceedings of the 12th IEEE/IFIP Network Operations and Management Symposium (NOMS), pp. 845–849 (2010). doi:10.1109/NOMS.2010.5488357

  3. Kumar, N., Saraph, G.: End-to-end QoS in interdomain routing. In: Proceedings of the 2nd International Conference on Networking and Services (2006). doi:10.1109/ICNS.2006.45

  4. Xiangjiang, H., Peidong, Z., Kaiyu, C., Zhenghu, G.: AS alliance in inter-domain routing. In: Proceedings of the 22nd International Conference on Information Networking and Applications—Workshops (AINAW), pp. 151–156 (2008). doi:10.1109/WAINA.2008.209

  5. Roberts L. (2009) A radical new router. IEEE Spectrum 46(7):34–39 doi:10.1109/MSPEC.2009.5109450

    Article  Google Scholar 

  6. Pouyllau, H., Carofiglio, G.: Inter-carrier SLA negotiation using Q-learning. Telecommun. Syst. (2011). doi:10.1007/s11235-011-9505-5

  7. Brooks P., Hestness B. (2010) User measures of quality of experience: why being objective and quantitative is important. IEEE Network 24(2):8–13 doi:10.1109/MNET.2010.5430138

    Article  Google Scholar 

  8. Famaey, J., Latré, S., Wauters, T., De Turck, F.: FedRR—a federated resource reservation algorithm for multimedia services. In: Proceedings of the 13th IEEE/IFIP Network Operations and Management Symposium (NOMS) (2012)

  9. Famaey, J., Latré, S., Wauters, T., De Turck, F.: An SLA-driven framework for dynamic multimedia content delivery federations. In: Proceedings of the Fifth International Workshop on Distributed Autonomous Network Management Systems (DANMS) (2012)

  10. Pouyllau, H., Douville, R.: End-to-end QoS negotiation in network federations. In: Proceedings of the 12th IEEE/IFIP Network Operations and Management Symposium (NOMS), pp. 173–176 (2010). doi:10.1109/NOMSW.2010.5486578

  11. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pp. 834–843 (2001) doi:10.1109/INFCOM.2001.916274

  12. Chen, S., Nahrstedt, K.: On finding multi-constrained paths. In: Proceedings of the IEEE International Conference on Communications, pp. 874–879 (1998). doi:10.1109/ICC.1998.685137

  13. De Neve, H., Van Mieghem, P.: A multiple quality of service routing algorithm for PNNI. In: Proceedings of the IEEE ATM Workshop, pp. 324–328 (1998)

  14. Liu, G., Ramakrishnan, K.: A*Prune: an algorithm for finding K shortest paths subject to multiple constraints. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pp. 743–749 (2001). doi:10.1109/INFCOM.2001.916263

  15. Yuan, X., Liu, X.: Heuristic algorithms for multi-constrained quality of service routing. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pp. 844–853 (2001). doi:10.1109/INFCOM.2001.916275

  16. Xiao J., Boutaba R. (2005) QoS-aware service composition and adaptation in autonomic communication. IEEE Journal on Selected Areas in Communications 23(12): 2344–2360 doi:10.1109/JSAC.2005.857212

    Article  Google Scholar 

  17. Yan J., Kowalczyk R., Lin J., Chhetri M.B., Goh S.K., Zhang J. (2007) Autonomous service level agreement negotiation for service composition provision. Future Generation Computer Systems 23:748–759 doi:10.1016/j.future.2007.02.004

    Article  Google Scholar 

  18. Balasubramaniam S., Botvich D., Carroll R., Mineraud J., Nakano T., Suda T., Donnelly W. (2011) Biologically inspired future service environment. Computer Networks 55(15):3423–3440 doi:10.1016/j.comnet.2011.07.004

    Article  Google Scholar 

  19. Yuanming, C., Wendong, W., Xiangyang, G., Xirong, Q.: Initiator-domain-based SLA negotiation for inter-domain QoS-service provisioning. In: Proceedings of the 4th International Conference on Networking and Services (2008). doi:10.1109/ICNS.2008.43

  20. Rubach, P., Sobolewski, M.: Dynamic SLA negotiation in autonomic federated environments. In: Proceedings of On the Move to Meaningful Internet Systems (2009). doi:10.1007/978-3-642-05290-3_36

  21. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification (WS-Agreement) (2011). URL http://www.ogf.org/documents/GFD.193.pdf

  22. Battré, D., Brazier, F., Clark, K., Oey, M., Papaspyrou, A., Wieder, P., Ziegler, W.: WS-Agreement negotiation version 1.0 (2011). URL http://www.ogf.org/documents/GFD.192.pdf

  23. Hudert S., Ludwig H., Wirtz G. (2009) Negotiating SLAs—an approach for a generic negotiation framework for WS-Agreement. Journal of Grid Computing 7(2):225–246 doi:10.1007/s10723-009-9118-3

    Article  Google Scholar 

  24. Hasselmeyer, P., Mersch, H., Koller, B., Quyen, H.N., Schubert, L., Wieder, P.: Implementing an SLA negotiation framework. In: Proceedings of Expanding the Knowledge Economy: Issues, Applications, Case Studies (eChallenges), pp. 154–161 (2007)

  25. Parkin, M., Hasselmeyer, P., Koller, B., Wieder, P.: An SLA re-negotiation protocol. In: Proceedings of the 2nd Non Functional Properties and Service Level Agreements in Service Oriented Computing Workshop (2008)

  26. Passarella A. (2012) A survey on content-centric technologies for the current internet: CDN and P2P solutions. Computer Communications 35(1):1–32 doi:10.1016/j.comcom.2011.10.005

    Article  Google Scholar 

  27. Mao, Z.M., Cranor, C.D., Douglis, F., Rabinovich, M., Spatscheck, O., Wang, J.: A precise and efficient evaluation of the proximity between web clients and their local DNS servers. In: Proceedings of the USENIX Annual Technical Conference (2002)

  28. Frank, B., Poese, I., Smaragdakis, G., Uhlig, S., Feldmann, A.: Content-aware traffic engineering. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, pp. 413–414 (2012). doi:10.1145/2254756.2254819

  29. Liu, X., Dobrian, F., Milner, H., Jiang, J., Sekar, V., Stoica, I., Zhang, H.: A case for a coordinated internet video control plane. In: Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication, pp. 359–370 (2012). doi:10.1145/2342356.2342431

  30. Niven-Jenkins, B., Le Faucheur, F., Bitar, N.: Content distribution network interconnection (CDNI) problem statement. RFC 6707 (Informational) (2012). URL http://www.ietf.org/rfc/rfc6707.txt

  31. ETSI: CDN interconnection architecture. ETSI TS 182 032 (2013). URL http://www.etsi.org/deliver/etsi_ts/182000_182099/182032/01.01.01_60/ts_182032v010101p.pdf

  32. McKeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford J., Shenker S., Turner J. (2008) OpenFlow: enabling innovation in campus networks. SIGCOMM Computer Communications Review 38(2):69–74 doi:10.1145/1355734.1355746

    Article  Google Scholar 

  33. Chowdhury N.M.K., Boutaba R. (2009) Network virtualization: State of the art and research challenges. IEEE Communications Magazine 47(7):20–26 doi:10.1109/MCOM.2009.5183468

    Article  Google Scholar 

  34. Farrel, A., Ayyangar, A., Vasseur, J.: Inter-domain MPLS and GMPLS traffic engineering—resource reservation protocol-traffic engineering (RSVP-TE) extensions. RFC 5151 (Proposed Standard) (2008). URL http://www.ietf.org/rfc/rfc5151.txt

  35. Kuipers F., Van Mieghem P., Korkmaz T., Krunz M. (2002) An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine 40(12):50–55 doi:10.1109/MCOM.2002.1106159

    Article  Google Scholar 

  36. Xue G., Zhang W., Tang J., Thulasiraman K. (2008) Polynomial time approximation algorithms for multi-constrained QoS routing. IEEE/ACM Transactions on Networking 16(3):656–669 doi:10.1109/TNET.2007.900712

    Google Scholar 

  37. Todd M.J. (2002) The many facets of linear programming. Mathematical Programming 91(3):417–436 doi:10.1007/s101070100261

    Article  MATH  MathSciNet  Google Scholar 

  38. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pp. 1–14 (2007). doi:10.1145/1298306.1298309

  39. Mitra S., Agrawal M., Yadav A., Carlsson N., Eager D., Mahanti A. (2011) Characterizing web-based video sharing workloads. ACM Transactions on the Web 5(2):1–27 doi:10.1145/1961659.1961662

    Article  Google Scholar 

  40. Avramova, Z., Wittevrongel, S., Bruneel, H., De Vleeschauwer, D.: Analysis and modeling of video popularity evolution in various online video content systems: power-law versus exponential decay. In: Proceedings of the First International Conference on Evolving Internet (INTERNET), pp. 95–100 (2009)

  41. Wu, T., Timmers, M., De Vleeschauwer, D., Van Leekwijck, W.: On the use of reservoir computing in popularity prediction. In: Proceedings of the Second International Conference on Evolving Internet (INTERNET), pp. 19–24 (2010). doi:10.1109/INTERNET.2010.13

  42. Garroppo R.G., Giordano S., Tavanti L. (2010) A survey on multi-constrained optimal path computation: Exact and approximate algorithms. Computer Networks 54(17):3081–3107 doi:10.1016/j.comnet.2010.05.017

    Article  MATH  Google Scholar 

  43. Karmarkar N. (1984) A new polynomial time algorithm for linear programming. Combinatorica 4(4):373–395

    Article  MATH  MathSciNet  Google Scholar 

  44. Dash, S.: An exponential lower bound on the length of some classes of branch-and-cut proofs. In: Proceedings of the 9th International IPCO Conference on Integer Programming and Combinatorial Optimization, pp. 145–160 (2002)

  45. Achterberg T., Berthold T. (2007) Improving the feasibility pump. Discrete Optimization 4:77–86 doi:10.1016/j.disopt.2006.10.004

    Article  MATH  MathSciNet  Google Scholar 

  46. Rothberg E. (2007) An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing 19(4):534–541 doi:10.1287/ijoc.1060.0189

    Article  MATH  Google Scholar 

  47. Gamer, T., Scharf, M.: Realistic simulation environments for IP-based networks. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (Simutools) (2008)

  48. Tang W., Fu Y., Cherkasova L., Vahdat A. (2007) Modeling and generating realistic streaming media server workloads. Computer Networks 51(1):336–356 doi:10.1016/j.comnet.2006.05.003

    Article  MATH  Google Scholar 

  49. Monath, T., Kind, M., Heger, T., Schlesinger, M., Aznar, J.: Economical analysis of experience-optimized service delivery. In: Proceedings of the 9th Conference on Telecommunications, Internet and Media Techno Economics (CTTE) (2010) doi:10.1109/CTTE.2010.5557711

  50. Schwarz H., Marpe D., Wiegand T. (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology 17(9):1103–1120. doi:10.1109/TCSVT.2007.905532

    Article  Google Scholar 

  51. Yu J., Chou T., Yang Z., Du X., Wang T. (2006) A dynamic caching algorithm based on internal popularity distribution of streaming media. Multimedia Systems 12(2):135–149. doi:10.1007/s00530-006-0045-x

    Article  Google Scholar 

  52. Chen S., Shen B., Wee S., Zhang X. (2006) Segment-based streaming media proxy: Modeling and optimization. IEEE Transactions on Multimedia 8(2):243–256. doi:10.1109/TMM.2005.864281

    Article  Google Scholar 

Download references

Acknowledgments

Jeroen Famaey is partially funded by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT). Steven Latré and Tim Wauters are partially funded by the Fund for Scientific Research Flanders (FWO). The research leading to these results was partially performed within the context of the FP7 OCEAN project and received funding from the European Union’s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement number 248775.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Famaey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Famaey, J., Latré, S., Wauters, T. et al. End-to-End Resource Management for Federated Delivery of Multimedia Services. J Netw Syst Manage 22, 396–433 (2014). https://doi.org/10.1007/s10922-013-9288-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-013-9288-y

Keywords

Navigation