Skip to main content
Log in

Design of Common Resource Management and Network Simulator in Heterogeneous Radio Access Network Environment

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

By the newly emerging radio access technologies, we face the new heterogeneous network environment. Focusing on the co-existence of multiple access networks and the complex service combinations, the wireless service operators should guarantee good quality of services for every user. Thus, the service operators build a new operation framework which combines the existing networks and newly adopted ones. Our objective is finding the optimal heterogeneous network operation framework. We suggest the market-based marginal cost function for evaluating the relative value of resources for each network and develop a whole new heterogeneous network operation framework. To prove the applicability of the proposed operation framework, we build a large-scale JAVA simulator. We can easily test the various service scenarios in heterogeneous network environment by the simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prytz, M., Karlsson, P., Cedervall, C., Bria, A., Karla, I.: Infrastructure cost benefits of ambient networks multi-radio access. In: Proc. IEEE Vehicular Technology Conference (2006)

  2. Pittmann, F., et al.: Ambient networking: concept & architecture. Inform. Soc. Technol. (2005)

  3. Sigle, R., et al.: Multiple radio access architecture. Inform. Soc. Technol. (2005)

  4. Niedermeier, C., Schmid, R., Mohyeldin, E., Dillinger, M.: Handover Management and Strategies for Reconfigurable Terminals (SDR Forum Contribution, 2002)

  5. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Area Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  6. van Sinderen, M.J., van Halteren, A.T., Wegdam, M., Meeuwissen, H.B., Eertink, E.H.: Supporting context-aware mobile applications: an infrastructure approach. IEEE Commun. Mag. 44(9), 96–104 (2006)

    Article  Google Scholar 

  7. van Kranenburg, H., Bargh, M.S., Iacob, S., Peddemors, A.: A context management framework for supporting context-aware distributed applications. IEEE Commun. Mag. 44(9), 67–74 (2006)

    Article  Google Scholar 

  8. Fodor, G., Eriksson, A., Tuoriniemi, A.: Providing quality of service in always best connected networks. IEEE Commun. Mag. 41(7), 154–163 (2003)

    Article  Google Scholar 

  9. Gazis, V., Alonistioti, N., Merakos, L.: Toward a generic always best connected capability in integrated WLAN/UMTS cellular mobile networks (and beyond). IEEE Wireless Commun. 12(3), 20–29 (2005)

    Article  Google Scholar 

  10. Gustafsson, E., Jonsson, A.: Always best connected. IEEE Wireless Commun. 10(1), 49–55 (2003)

    Article  Google Scholar 

  11. Gazis, V., Houssos, N., Alonistioti, N., Merakos, L.: On the complexity of always best connected in 4G mobile networks. IEEE 58th Veh. Technol. Conf. 4, 2312–2316 (2003)

    Google Scholar 

  12. Clark, D., Partridge, C., Ramming, Ch.s., Wroclawski, J.: A Knowledge Plane for the Internet. ACM Sigcomm 2003, Karlsruhe, Germany (Aug. 2003)

  13. Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., Warfield, A.: Plutarch: an argument for network pluralism. In: Proc. ACM Sigcomm FDNA 2003 Workshop, Karlsruhe, Germany (Aug. 2003)

  14. Sollins, K.R.: Designing for scale and differentiation. In: Proc. ACM Sigcomm FDNA 2003 Workshop, Karlsruhe, Germany (Aug. 2003)

  15. 3GPP TR 25.881 Improvement of Radio Resource Management (RRM) across RNS and RNS/BSS

  16. 3GPP TR 25.891 Improvement of Radio Resource Management (RRM) across RNS and RNS/BSS post-Rel-5

  17. 3GPP TR22.934 Feasibility study on 3GPP - WLAN interworking

  18. 3GPP TR23.234 3GPP - WLAN interworking; System description

  19. 3GPP TR23.934 3GPP - WLAN interworking; Functional and architectural definition

  20. Buddhikot, M., et al.: Design and Implementation of a WLAN/CDMA2000 Interworking Architecture. IEEE Commun. Mag. 41(11), 90–100 (2003)

    Article  Google Scholar 

  21. EU IST 5FP Project ARROWS, Advanced Radio Resource Management for Wireless Services, http://www.arrows-ist.upc.es

  22. EU IST 5FP Project MonaSidre, Management Of Networks And Services In a Diversified Radio Environment, http://www.monasidre.com

  23. EU IST 5FP Project CAUTION++, Capacity and network management platform for increased utilisation of wireless systems of next generation, http://www.telecom.ece.ntua.gr/CautionPlus

  24. EU IST 6FP Project EVEREST, Evolutionary Strategies for Radio Resource Management in Cellular Heterogeneous Networks, http://www.everest-ist.upc.es/

  25. Luo, J., Mukerjee, R., Dillinger, M., Mohyeldin, E., Schulz, E.: Investigation of radio resource scheduling in WLANs coupled with 3G cellular network. IEEE Commun. Mag. 41(6), 108–115 (2003)

    Article  Google Scholar 

  26. Vanem, E., Svaet, S., Paint, F.: Effects of multiple access alternatives in heterogeneous wireless networks. Proc. IEEE WCNC 2003 3, 1696–1700 (2003)

    Article  Google Scholar 

  27. Koo, I., Furuskar, A., Zander, J., Kim, K.: Erlang capacity of multiaccess systems with service-based access selection. IEEE Commun. Lett. 8(11), 662–664 (2004)

    Article  Google Scholar 

  28. 3GPP TR22.951 Network Sharing; Service Aspects and Requirements (Release 6)

  29. 3GPP TR23.851 Network Sharing; Architecture and Functional Description (Release 6)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Kim.

Appendix A

Appendix A

To prove the difference among marginal costs is converged to zero. We first set up a system of non-linear differential equations according to Traffic Transition Law as follows:

For a transition rate λ,

$$ \begin{gathered} \frac{{du_{1} }}{dt} = - \lambda \sum\limits_{j = 1}^{N} {c_{1j} (f_{1} (u_{j} ) - f_{j} (u_{j} ))} \hfill \\ \frac{{du_{2} }}{dt} = - \lambda \sum\limits_{j = 1}^{N} {c_{2j} (f_{2} (u_{j} ) - f_{j} (u_{j} ))} \hfill \\ \vdots \hfill \\ \frac{{du_{N} }}{dt} = - \lambda \sum\limits_{j = 1}^{N} {c_{Nj} (f_{N} (u_{j} ) - f_{j} (u_{j} ))} \hfill \\ \end{gathered} $$

Let \( A_{ij} : = c_{ij} (f_{i} (u_{i} ) - f_{j} (u_{j} )). \) The total traffic \( u_{1} + u_{2} + \cdots + u_{N} \) is conserved since

$$ \frac{{d(u_{1} + u_{2} + \cdots + u_{N} )}}{{}} = - \lambda \sum\limits_{i,j} {A_{ij} } = 0\,\left( {\because A_{ij} = - A_{ji} } \right) $$

We measure the “variation among marginal costs” with the following function: \( V(t) = \sum\limits_{i,j} {c_{ij} (f_{i} (u_{i} (t)) - f_{j} (u_{j} (t)))^{2} }. \) The load balancing effect by the marginal cost function can be shown by the \( V(t) = \sum\limits_{i,j} {c_{ij} (f_{i} (u_{i} (t)) - f_{j} (u_{j} (t)))^{2} } \to 0 \) as the dynamics as described by the marginal cost based traffic transition. Using the fact that \( A_{ij} = - A_{ji} , \) we have

$$ \dot{V} = \frac{d}{dt}\sum\limits_{i,j} {c_{ij} (f_{i} (u_{i} ) - f_{j} (u_{j} ))^{2} }= 2\sum\limits_{i,j} {A_{ij} (f'_{i} (u_{i} )\dot{u}_{i} } - f'_{j} (u_{j} )\dot{u}_{j} ) = - 2\lambda \sum\limits_{i,j} {A_{ij} \left( {f'_{i} (u_{i} )\sum\limits_{k} {A_{ik} - f'_{j} (u_{j} )\sum\limits_{k} {A_{jk} } } } \right)} = - 2\lambda \left( {\sum\limits_{i,j} {\sum\limits_{k} {f'_{i} (u_{i} )A_{ij} A_{ik} - \sum\limits_{i,j} {\sum\limits_{k} {f'_{j} (u_{j} )A_{ij} A_{jk} } } } } } \right)= - 4\lambda \left( {\sum\limits_{i} {f'_{i} (u_{i} )\sum\limits_{j,k} {A_{ij} A_{ik} } } } \right) = - 4\lambda \sum\limits_{i} {f'_{i} (u_{i} )\left( {\sum\limits_{k} {A_{ik} } } \right)^{2} }= - \frac{4}{\lambda }\sum\limits_{i} {f'_{i} (u_{i} )(\dot{u}_{i} )^{2} } \le 0$$
$$ \dot{V} = 0 \Leftrightarrow \left( {\sum\limits_{k} {A_{ik} } } \right) = 0 \Leftrightarrow \dot{u}_{i} = 0 \Leftrightarrow f_{i} (u_{i} ) - \frac{{\sum\nolimits_{j = 1}^{N} {c_{ij} f_{j} (u_{j} )} }}{{\sum\nolimits_{j = 1}^{N} {c_{ij} } }}$$

The minimum of V is 0, when \( f_{1} \left( {u_{1} } \right) = f_{2} \left( {u_{2} } \right) = \cdots = f_{N} \left( {u_{N} } \right). \) Therefore, we prove the zero convergence of difference among the marginal cost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH. Design of Common Resource Management and Network Simulator in Heterogeneous Radio Access Network Environment. J Netw Syst Manage 17, 137–156 (2009). https://doi.org/10.1007/s10922-008-9104-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-008-9104-2

Keywords

Navigation