Skip to main content
Log in

Nondestructive Evaluation of Postfire Full-Scale Reinforced Concrete Frames: Field Tests

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Fire obviously causes negative effects on reinforced concrete (RC) structures. Assessment of these postfire structures is ultimately important to provide information for making decisions on demolishing or retrofitting. For retrofitting purpose, non-destructive assessment, which does not cause additional damage to structures, is preferable compared with destructive assessment. In this direction, non-destructive assessment of postfire RC frames was performed in this study. To achieve this aim, experiments were performed on eleven full-scale RC frames, included one, five, and other five frames exposed to 0 (control), 45 min, and 75 min of fire, respectively. These two fires had similar maximum temperature, but the 45-min fire had higher increasing rate of temperature (IRT). After fire exposure, methods of Schmidt rebounding, ultrasonic, and vibration tests were used to perform non-destructive assessment by comparing the results of postfire frames against the control frame. The results showed that the explosive spalling of concrete mainly occurred between 5 and 12th min and then proportionally decreased with the increase of fire duration. The IRT outstandingly affected the explosive damage of RC frames. The higher IRT resulted in higher cracking and explosive spalling of concrete; IRT is thus an important parameter to represent the severity of fire. The experimental non-destructive data was analysed and compared to provide some information on the assessment of postfire RC frames, which can be useful for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Behnam, B.: Fire structural response of the plasco building: a preliminary investigation report. Int. J. Civ. Eng. (2018). https://doi.org/10.1007/s40999-018-0332-x

    Article  Google Scholar 

  2. Shakib, H., Pirizadeh, M., Dardaei, S., Zakersalehi, M.: Technical and administrative assessment of plasco building incident. Int. J. Civ. Eng. 16(9), 1227–1239 (2018). https://doi.org/10.1007/s40999-018-0283-2

    Article  Google Scholar 

  3. Ponikiewski, T., Katzer, J., Kilijanek, A., Kuźmińska, E.: Mechanical behaviour of steel fibre reinforced SCC after being exposed to fire. Adv. Concr. Constr. 6(6), 631–643 (2018). https://doi.org/10.12989/acc.2018.6.6.631

    Article  Google Scholar 

  4. Lee, H.-J., Kim, S.-K., Lee, H.-S., Kang, Y.-H., Kim, W., Kang, T.H.-K.: Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals. Adv. Concr. Construct. 8(4), 311–320 (2019). https://doi.org/10.12989/acc.2019.8.4.311

    Article  Google Scholar 

  5. Le, Q.X., Dao, V.T.N., Torero, J.L., Maluk, C., Bisby, L.: Effects of temperature and temperature gradient on concrete performance at elevated temperatures. Adv. Struct. Eng. 21(8), 1223–1233 (2017). https://doi.org/10.1177/1369433217746347

    Article  Google Scholar 

  6. Gao, W.Y., Dai, J.-G., Teng, J.G., Chen, G.M.: Finite element modeling of reinforced concrete beams exposed to fire. Eng. Struct. 52, 488–501 (2013). https://doi.org/10.1016/j.engstruct.2013.03.017

    Article  Google Scholar 

  7. Kodur, V.K.R., Dwaikat, M.B., Fike, R.S.: An approach for evaluating the residual strength of fire-exposed RC beams. Mag. Concr. Res. 62(7), 479–488 (2010). https://doi.org/10.1680/macr.2010.62.7.479

    Article  Google Scholar 

  8. ACI. Building code requirements for structural concrete (ACI 318M-08) and commentary. American Concrete Institute, Farmington Hills (2008)

  9. Hsu, J.-H., Lin, C.-S.: Effect of fire on the residual mechanical properties and structural performance of reinforced concrete beams. J. Fire. Prot. Eng. 18(4), 245–274 (2008). https://doi.org/10.1177/1042391507077171

    Article  Google Scholar 

  10. Kodur, V.K.R., Agrawal, A.: An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Eng. Struct. 110, 293–306 (2016). https://doi.org/10.1016/j.engstruct.2015.11.047

    Article  Google Scholar 

  11. Nguyen, Vu.N., Van Cao, V.: NSM GFRP strengthening of reinforced concrete beams after exposure to fire: experiments and theoretical model. J. Compos. Constr. 27(1), 04022086 (2023). https://doi.org/10.1061/JCCOF2.CCENG-3933

    Article  Google Scholar 

  12. Reddy, D.V., Sobhan, K., Liu, L., Young, J.D.: Size effect on fire resistance of structural concrete. Eng. Struct. 99, 468–478 (2015). https://doi.org/10.1016/j.engstruct.2015.05.015

    Article  Google Scholar 

  13. Eamon, C.D., Jensen, E.: Reliability analysis of reinforced concrete columns exposed to fire. Fire Saf. J. 62, 221–229 (2013). https://doi.org/10.1016/j.firesaf.2013.10.002

    Article  Google Scholar 

  14. Kodur, V., Khaliq, W., Raut, N.: An approach to account for tie configuration in predicting fire resistance of reinforced concrete columns. Eng. Struct. 56, 1976–1985 (2013). https://doi.org/10.1016/j.engstruct.2013.08.023

    Article  Google Scholar 

  15. Li, G.-Q., Guo, S.-X., Zhou, H.-S.: Modeling of membrane action in floor slabs subjected to fire. Eng. Struct. 29(6), 880–887 (2007). https://doi.org/10.1016/j.engstruct.2006.06.025

    Article  Google Scholar 

  16. Lim, L., Buchanan, A., Moss, P., Franssen, J.-M.: Numerical modelling of two-way reinforced concrete slabs in fire. Eng. Struct. 26(8), 1081–1091 (2004). https://doi.org/10.1016/j.engstruct.2004.03.009

    Article  Google Scholar 

  17. Zheng, W., Hou, X.: Experiment and analysis on the mechanical behaviour of PC simply-supported slabs subjected to fire. Adv. Struct. Eng. 11(1), 71–89 (2008). https://doi.org/10.1260/136943308784069513

    Article  Google Scholar 

  18. Cao, V.V., Vo, H.B., Dinh, L.H., Doan, D.V.: Experimental behavior of fire-exposed reinforced concrete slabs without and with FRP retrofitting. J. Build. Eng. (2022). https://doi.org/10.1016/j.jobe.2022.104315

    Article  Google Scholar 

  19. Prakash, P.R., Srivastava, G.: Nonlinear analysis of reinforced concrete plane frames exposed to fire using direct stiffness method. Adv. Struct. Eng. 21(7), 1036–1050 (2017). https://doi.org/10.1177/1369433217737118

    Article  Google Scholar 

  20. Kumar, P., Srivastava, G.: Effect of fire on in-plane and out-of-plane behavior of reinforced concrete frames with and without masonry infills. Constr. Build. Mater. 167, 82–95 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.116

    Article  Google Scholar 

  21. El-Fitiany, S.F., Youssef, M.A.: Fire performance of reinforced concrete frames using sectional analysis. Eng. Struct. 142, 165–181 (2017). https://doi.org/10.1016/j.engstruct.2017.03.065

    Article  Google Scholar 

  22. Markovič, M., Saje, M., Planinc, I., Bratina, S.: On strain softening in finite element analysis of RC planar frames subjected to fire. Eng. Struct. 45, 349–361 (2012). https://doi.org/10.1016/j.engstruct.2012.06.032

    Article  Google Scholar 

  23. Behnam, B., Ronagh, H.R., Baji, H.: Methodology for investigating the behavior of reinforced concrete structures subjected to post earthquake fire. Adv. Concr. Constr. 1(1), 29–44 (2013). https://doi.org/10.12989/acc.2013.1.1.029

    Article  Google Scholar 

  24. Wu, B., Liu, J., Chen, X.: Numerical analysis of lateral displacement of beam-column joints in concrete frame structures subjected to fire. Adv. Struct. Eng. 21(10), 1495–1509 (2017). https://doi.org/10.1177/1369433217749767

    Article  Google Scholar 

  25. Ren, P., Hou, X., Kodur, V.K.R., Ge, C., Zhao, Y., Zhou, W.: Modeling the fire response of reactive powder concrete beams with due consideration to explosive spalling. Constr. Build. Mater. 301, 124094 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124094

    Article  CAS  Google Scholar 

  26. Behnam, B.: On the effect of travelling fire on the stability of seismic-damaged large reinforced concrete structures. Int. J. Civ. Eng. 14(8), 535–545 (2016). https://doi.org/10.1007/s40999-016-0023-4

    Article  Google Scholar 

  27. Behnam, B.: Failure sensitivity analysis of tall moment-resisting structures under natural fires. Int. J. Civ. Eng. 16(12), 1771–1780 (2018). https://doi.org/10.1007/s40999-017-0248-x

    Article  Google Scholar 

  28. Ada, M., Sevim, B., Yüzer, N., Ayvaz, Y.: Assessment of damages on a RC building after a big fire. Adv. Concret. Constr. 6(2), 177–197 (2018). https://doi.org/10.12989/acc.2018.6.2.177

    Article  Google Scholar 

  29. Mistri, A., Davis, R.P., Sarkar, P.: Condition assessment of fire affected reinforced concrete shear wall building: a case study. Adv. Concret. Constr. 4(2), 89–105 (2016). https://doi.org/10.12989/acc.2016.4.2.089

    Article  Google Scholar 

  30. Stratford, T.J., Gillie, M., Chen, J.F., Usmani, A.S.: Bonded fibre reinforced polymer strengthening in a real fire. Adv. Struct. Eng. 12(6), 867–878 (2009). https://doi.org/10.1260/136943309790327743

    Article  Google Scholar 

  31. Kodur, V.K.R., Garlock, M., Iwankiw, N.: Structures in fire: state-of-the-art, research and training needs. Fire Technol. 48(4), 825–839 (2012). https://doi.org/10.1007/s10694-011-0247-4

    Article  Google Scholar 

  32. Abdulraheem, M.S., Kadhum, M.M.: Experimental and numerical study on post-fire behaviour of concentrically loaded reinforced reactive powder concrete columns. Constr. Build. Mater. 168, 877–892 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.123

    Article  CAS  Google Scholar 

  33. Jau, W.-C., Huang, K.-L.: A study of reinforced concrete corner columns after fire. Cement Concr. Compos. 30(7), 622–638 (2008). https://doi.org/10.1016/j.cemconcomp.2007.09.009

    Article  CAS  Google Scholar 

  34. Chen, Y.-H., Chang, Y.-F., Yao, G.C., Sheu, M.-S.: Experimental research on post-fire behaviour of reinforced concrete columns. Fire Saf. J. 44(5), 741–748 (2009). https://doi.org/10.1016/j.firesaf.2009.02.004

    Article  CAS  Google Scholar 

  35. Ali, F., Nadjai, A., Abu-Tair, A.: Explosive spalling of normal strength concrete slabs subjected to severe fire. Mater. Struct. 44(5), 943–956 (2011). https://doi.org/10.1617/s11527-010-9678-5

    Article  Google Scholar 

  36. Shah, A.H., Sharma, U.K.: Fire resistance and spalling performance of confined concrete columns. Constr. Build. Mater. 156, 161–174 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.167

    Article  Google Scholar 

  37. Jeanes, D.: Predicting Fire Endurance of Steel Structures. American Society of Civil Engineers (ASCE) National Convention pp. 26–30 (1982)

  38. British Steel: The behaviour of multi-storey steel frame buildings in fire. British Steel, Rotherham, United Kingdom, p. 82 (1999)

  39. Zanon, R., Sommavilla, M., Vassart, O., Zhao, B., Franssen, J.-M.: FRACOF: Fire resistance assessment of partially protected steel-concrete composite floors. XXIII Giornate italiane della costruzione in acciaio: Doppiavoce (2011)

  40. Lennon, T., Moore, D.: The natural fire safety concept—full-scale tests at Cardington. Fire Saf. J. 38(7), 623–643 (2003). https://doi.org/10.1016/S0379-7112(03)00028-6

    Article  Google Scholar 

  41. Wald, F., da Silva, L.S., Moore, D.B., Lennon, T., Chladná, M., Santiago, A., et al.: Experimental behaviour of a steel structure under natural fire. Fire Saf. J. 41(7), 509–522 (2006). https://doi.org/10.1016/j.firesaf.2006.05.006

    Article  Google Scholar 

  42. Wald, F.K.P., Chlouba, P., Sokol, Z., Strejček, M., Pospíšil, J., Štroner, M., Křemen, T., Smítka, V.: Fire Test on an Administrative Building in Mokrsko. Czech Technical University in Prague Prague, Printing House Česká Technika (2010)

    Google Scholar 

  43. Molkens, T., Van Coile, R., Gernay, T.: Assessment of damage and residual load bearing capacity of a concrete slab after fire: applied reliability-based methodology. Eng. Struct. 150, 969–985 (2017). https://doi.org/10.1016/j.engstruct.2017.07.078

    Article  Google Scholar 

  44. Stadler, M., Mensinger, M., Schaumann, P., Sothmann, J.: Munich fire tests on membrane action of composite slabs in fire –test results and recent findings. Application of Structural Fire Design, Prague, Czech Republic 29 April 2011

  45. Nadjai, A., Bailey, C.G., Vassart, E.-I.O., Han, S., Zhao, E.-I.B., Hawes, E.-I.M., et al.: Full-scale fire test on a composite floor slab incorporating long span cellular steel beams. Structural Engineer. 2011; November

  46. Ring, T., Zeiml, M., Lackner, R.: Underground concrete frame structures subjected to fire loading: part I – large-scale fire tests. Eng. Struct. 58, 175–187 (2014). https://doi.org/10.1016/j.engstruct.2012.10.022

    Article  Google Scholar 

  47. Sharma, U.K., Bhargava, P., Singh, B.B., Singh, Y.Y., Kumar, V., Kamath, P., et al.: Full-scale testing of a damaged reinforced concrete frame in fire. Struct. Build. 165(7), 335–346 (2012). https://doi.org/10.1680/stbu.11.00031

    Article  Google Scholar 

  48. Bailey, C.: Holistic behaviour of concrete buildings in fire. Struct. Build. 152(3), 199–212 (2002). https://doi.org/10.1680/stbu.2002.152.3.199

    Article  Google Scholar 

  49. Ring, T., Zeiml, M., Lackner, R.: Underground concrete frame structures subjected to fire loading: part II – re-analysis of large-scale fire tests. Eng. Struct. 58, 188–196 (2014). https://doi.org/10.1016/j.engstruct.2012.10.021

    Article  Google Scholar 

  50. International A. C805/C805M - 13a. Standard Test Method for Rebound Number of Hardened Concrete, West Conshohocken, PA USA.

  51. Computers and Structures Inc. SAP2000 Version 19.2.0. 2017.

  52. DiPasquale, E., Ju, J.-W., Askar, A., Cakmak, A.S.: Relation between global damage indices and local stiffness degradation. J. Struct. Eng. 116(5), 1440–1456 (1990)

    Article  Google Scholar 

  53. Kim, T.-H., Lee, K.-M., Chung, Y.-S., Shin, H.M.: Seismic damage assessment of reinforced concrete bridge columns. Eng. Struct. 27, 576–592 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Vui Van Cao: Conceptualization, Investigation, Formal analysis, Visualization, Writing—Original Draft, Writing-Reviewing and Editing, Supervision. Vu Nguyen Nguyen: Investigation, Methodology, Formal analysis, Writing—Original Draft. Hamid Ronagh: Conceptualization, Methodology, Writing-Reviewing and Editing, Supervision. Cuong Quoc Nguyen: Resources, Methodology, Investigation, Data curation, Formal analysis. Phuc Ba Nguyen Le: Resources, Methodology, Investigation, Data curation, Formal analysis. Ly Hai Nguyen: Resources, Methodology, Investigation, Data curation, Formal analysis. Hung Manh Nguyen: Resources, Methodology, Investigation, Data curation, Formal analysis. Ho Van Bui: Resources, Methodology, Investigation, Data curation, Formal analysis.

Corresponding author

Correspondence to Vui Van Cao.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Cao, V., Nguyen, V.N., Ronagh, H. et al. Nondestructive Evaluation of Postfire Full-Scale Reinforced Concrete Frames: Field Tests. J Nondestruct Eval 43, 35 (2024). https://doi.org/10.1007/s10921-024-01050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-024-01050-3

Keywords

Navigation