Skip to main content
Log in

A Method for Non-destructive Detection of Moisture Content in Oilseed Rape Leaves Using Hyperspectral Imaging Technology

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This study assessed the viability of using hyperspectral imaging (HSI) technology for nondestructive detection of moisture content in oilseed rape leaves. Besides, a method (IVISSA-iPLS) coupling interval variable iterative space shrinkage approach (IVISSA) with interval partial least square (iPLS) was introduced to identify characteristic wavelengths. The IVISSA-iPLS algorithm changed the selection target from wavelength points to spectral intervals, reducing the computational burden while increasing the continuity between the selected wavelengths. Subsequently, the characteristic wavelengths selected by the IVISSA-iPLS were used as the input of the least square support vector regression (LSSVR) model to predict the moisture content of oilseed rape leaves. Additionally, the competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), the IVISSA, and the iPLS were investigated as wavelength selection algorithms for comparison. The results indicated that the LSSVR models based on the characteristic wavelengths acquired from the IVISSA-iPLS using divided wavelength intervals of 30, demonstrated the highest performance, with \({{\text{R}}}_{{\text{p}}}^{2}\) of 0.9555, RMSEP of 0.0065, and \({\text{RPD}}\) of 4.715. Finally, the optimal prediction model was used to visualize the moisture content of oilseed rape leaves, which offered a more intuitive and effective method for the evaluation of moisture content. The results ascertained the significant possibility of combining HSI with combinatorial algorithms in detecting, quantifying, and visualizing the moisture content of oilseed rape leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data that support the findings of this study are available on request from the corresponding author. Data are not publicly available due to privacy or ethical restrictions.

References

  1. Liu, Q.X., Ren, T., Zhang, Y.W., Li, X.K., Cong, R.H., Liu, S.S., Fan, X.L., Lu, J.W.: Evaluating the application of controlled release urea for oilseed rape on Brassica napus in a regional scale: the optimal usage, yield and nitrogen use efficiency responses. Ind. Crop Prod. 140, 111560 (2019). https://doi.org/10.1016/j.indcrop.2019.111560

    Article  CAS  Google Scholar 

  2. Zhou, X., Zhao, C.J., Sun, J., Cao, Y., Yao, K.S., Xu, M.: A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 409, 135251 (2023). https://doi.org/10.1016/j.foodchem.2022.135251

    Article  CAS  PubMed  Google Scholar 

  3. Tian, C., Zhou, X., Fahmy, A.E., Ding, Z.L., Zhran, M.A., Liu, Q., Peng, J.W., Zhang, Z.H., Song, H.X., Guan, C.Y., Kheir, A.M.S., Eissa, M.A.: Balanced fertilization under different plant densities for winter oilseed rape ( Brassica napus L.) grown on paddy soils in Southern China. Ind. Crop Prod. 151, 112413 (2020). https://doi.org/10.1016/j.indcrop.2020.112413

    Article  CAS  Google Scholar 

  4. Zhou, X., Zhao, C.J., Sun, J., Yao, K.S., Xu, M., Cheng, J.H.: Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 291, 122337 (2023). https://doi.org/10.1016/j.saa.2023.122337

    Article  CAS  Google Scholar 

  5. Fu, L.H., Sun, J., Wang, S.M., Xu, M., Yao, K.S., Zhou, X.: Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 281, 121641 (2022)

    Article  CAS  Google Scholar 

  6. Pan, Y.Y., Sun, D.W., Cheng, J.H., Han, Z.: Non-destructive detection and screening of non-uniformity in microwave sterilization using hyperspectral imaging analysis. Food Anal. Meth. 11(6), 1568–1580 (2018). https://doi.org/10.1007/s12161-017-1134-5

    Article  Google Scholar 

  7. Sun, J., Zhou, X., Hu, Y.G., Wu, X.H., Zhang, X.D., Wang, P.: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Comput. Electron. Agric. 160, 153–159 (2019). https://doi.org/10.1016/j.compag.2019.03.004

    Article  Google Scholar 

  8. Zhou, X., Sun, J., Mao, H.P., Wu, X.H., Zhang, X.D., Yang, N.: Visualization research of moisture content in leaf lettuce leaves based on WT-PLSR and hyperspectral imaging technology. J. Food Process Eng 41(2), e12647 (2018). https://doi.org/10.1111/jfpe.12647

    Article  CAS  Google Scholar 

  9. Zheng, Q.F., Zhao, Y.L., Wang, J.B., Liu, T.T., Zhang, B., et al.: Spectrum-effect relationships between uplc fingerprints and bioactivities of crude secondary roots of aconitum carmichaelii debeaux (Fuzi) and its three processed products on mitochondrial growth coupled with canonical correlation analysis. J. Ethnopharmacol. 153(3), 615–623 (2014). https://doi.org/10.1016/j.jep.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, X.P., Zhen, J.N., Miao, J., Zhao, D.M., Shen, Z.: Newly-developed three-band hyperspectral vegetation index for estimating leaf relative chlorophyll content of mangrove under different severities of pest and disease. Ecol. Indic. 140, 108978 (2022). https://doi.org/10.1016/j.ecolind.2022.108978

    Article  CAS  Google Scholar 

  11. Zhu, S.L., Chao, M.N., Zhang, J.Y., Xu, X.J., Song, P.W., Zhang, J.L., Huang, Z.W.: Identification of soybean seed varieties based on hyperspectral imaging technology. Sensors. 19(23), 5225 (2019). https://doi.org/10.3390/s19235225

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Shao, Y.Y., Xuan, G.T., Hu, Z.C., Gao, X.M.: Identification of adulterated cooked millet flour with Hyperspectral Imaging Analysis. IFAC-PapersOnLine. 51(17), 96–101 (2018). https://doi.org/10.1016/j.ifacol.2018.08.068

    Article  Google Scholar 

  13. Zhou, X., Zhao, C.J., Sun, J., Yao, K.S., Xu, M.: Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 290, 122288 (2023). https://doi.org/10.1016/j.saa.2022.122288

    Article  CAS  Google Scholar 

  14. Sun, Y.Y., Ye, Z.M., Zhong, M.H., Wei, K.D., Shen, F., Li, G.L., Yuan, J., Xing, C.R.: Rapid and nondestructive method for identification of molds growth time in wheat grains based on hyperspectral imaging technology and chemometrics. Infrared Phys. Technol. 128, 104532 (2023). https://doi.org/10.1016/j.infrared.2022.104532

    Article  CAS  Google Scholar 

  15. Sinija, V.R., Mishra, H.N.: Ftnir spectroscopic method for determination of moisture content in green tea granules. Food Bioprocess Technol. 4(1), 136–141 (2011). https://doi.org/10.1007/s11947-008-0149-8

    Article  Google Scholar 

  16. Fan, X.G., Wang, X.F., Wang, X., Xu, Y.J., Que, J., He, H., Wang, X.D., Tang, M.: A reconstruction algorithm based on sparse representation for Raman signal processing under high background noise. J. Instrum. 11, P02002 (2016). https://doi.org/10.1088/1748-0221/11/02/P02002

    Article  CAS  Google Scholar 

  17. ElManawy, A.I., Sun, D.W., Abdalla, A., Zhu, Y.M., Cen, H.Y.: HSI-PP: a flexible open-source software for hyperspectral imaging-based plant phenotyping. Comput. Electron. Agric. 200, 107248 (2022). https://doi.org/10.1016/j.compag.2022.107248

    Article  Google Scholar 

  18. Kiyono, K., Tsujimoto, Y.: Nonlinear filtering properties of detrended fluctuation analysis. Physica A 462, 807–815 (2016). https://doi.org/10.1016/j.physa.2016.06.129

    Article  ADS  MathSciNet  Google Scholar 

  19. Qu, J.H., Sun, D.W., Cheng, J.H., Pu, H.B.: Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT-food Sci. Technol. 75, 529–536 (2017). https://doi.org/10.1016/j.lwt.2016.09.024

    Article  CAS  Google Scholar 

  20. Li, H.H., Geng, W.H., Hassan, M.W., Zuo, M., Wei, W.Y., Wu, X.Y., Ouyang, Q., Chen, Q.S.: Rapid detection of chloramphenicol in food using SERS flexible sensor coupled artificial intelligent tools. Food Control 128, 108186 (2021). https://doi.org/10.1016/j.foodcont.2021.108186

    Article  CAS  Google Scholar 

  21. Nirere, A., Sun, J., Zhong, Y.H.: A rapid non-destructive detection method for wolfberry moisture grade using hyperspectral imaging technology. J. Nondestruct. Eval. 42(2), 45 (2023). https://doi.org/10.1007/s10921-023-00944-y

    Article  Google Scholar 

  22. Maric, L.B., Jovic, B.D., Petrovic, S.D., Nikolic, A.M., Homsek, I.J.: The application of NIR spectroscopy with chemometric analysis for monitoring the powder blending process. J. Serb. Chem. Soc. 79(3), 331–340 (2014). https://doi.org/10.2298/JSC010413080M

    Article  CAS  Google Scholar 

  23. Tan, B.H., You, W.H., Huang, C.X., Xiao, T.F., Tian, S.H., Luo, L.N., Xiong, N.X.: An intelligent near-infrared diffuse reflectance spectroscopy scheme for the non-destructive testing of the sugar content in cherry tomato fruit. Electronics 11(21), 3504–3504 (2022). https://doi.org/10.3390/electronics11213504

    Article  CAS  Google Scholar 

  24. Li, H.D., Liang, Y.Z., Xu, Q.S., Cao, D.S.: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648(1), 77–84 (2009). https://doi.org/10.1016/j.aca.2009.06.046

    Article  CAS  PubMed  Google Scholar 

  25. Liu, B.H., Qu, B., Zheng, N.: A successive projection algorithm for solving the multiple-sets split feasibility problem. Numer. Func. Anal. Opt. 35(11), 1459–1466 (2014). https://doi.org/10.1080/01630563.2014.895755

    Article  MathSciNet  Google Scholar 

  26. Deng, B.C., Yun, Y.H., Ma, P., Lin, C.C., Ren, D.B., Liang, Y.Z.: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals. Analyst 140(6), 1876–1885 (2015). https://doi.org/10.1039/c4an02123a

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Li, Y.P., Fang, T., Zhu, S.Q., Huang, F.R., Chen, Z.Q., Wang, Y.: Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 189, 37–43 (2018). https://doi.org/10.1016/j.saa.2017.06.049

    Article  ADS  CAS  Google Scholar 

  28. Sun, J., Lu, X.Z., Mao, H.P., Wu, X.H., Gao, H.Y.: Quantitative determination of rice moisture based on hyperspectral imaging technology and BCC-LS-SVR algorithm. J. Food Process Eng 40(3), e12446 (2017). https://doi.org/10.1111/jfpe.12446

    Article  Google Scholar 

  29. Corti, M., Gallina, P.M., Cavalli, D., Cabassi, G.: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosyst. Eng. 158, 38–50 (2017)

    Article  Google Scholar 

  30. Currò, S., Fasolato, L., Serva, L., Boffo, L., Ferlito, J.C., Novelli, E., Balzan, S.: Use of a portable near-infrared tool for rapid on-site inspection of freezing and hydrogen peroxide treatment of cuttlefish (Sepia officinalis). Food Control 132, 108524 (2022). https://doi.org/10.1016/j.foodcont.2021.108524

    Article  CAS  Google Scholar 

  31. Ustin, S.L., Gitelson, A.A., Jacquemoud, S., Schaepman, M., Asner, G.P., Gamon, J.A., Zarco-Tejada, P.: Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 113(1), S67–S77 (2009). https://doi.org/10.1016/j.rse.2008.10.019

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Project funded by the National natural science funds projects (Grant No. 32201653, 31971788), the China Postdoctoral Science Foundation (2021M701479), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Scientific research funding projects for students of Jiangsu University (22A048).

Author information

Authors and Affiliations

Authors

Contributions

YL: Conceptualization, Methodology, Software, Investigation, Writing: original draft. XZ: Validation, Formal analysis, Writing: review & editing. JS: Validation, Formal analysis, Visualization, Software. BL: Validation, Formal analysis, Visualization. JJ: Writing: review & editing.

Corresponding authors

Correspondence to Xin Zhou or Jun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, X., Sun, J. et al. A Method for Non-destructive Detection of Moisture Content in Oilseed Rape Leaves Using Hyperspectral Imaging Technology. J Nondestruct Eval 43, 32 (2024). https://doi.org/10.1007/s10921-024-01049-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-024-01049-w

Keywords

Navigation