Skip to main content
Log in

Machine Learning Models for Bedrock Condition Classification in Pavement Structure Evaluation: A Comparative Study

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Pavement performance evaluation based on modulus is crucial for controlling the overall performance of pavements and decisions making throughout the pavement’s life cycle. Falling weight deflectometer (FWD) tests are commonly employed to collect deflection data, which is subsequently back-calculated to get each layer’s modulus. However, existing studies lack a complete framework for incorporating the bedrock condition in the back-calculation process. Here, an integrated process of pavement performance evaluation utilizing FWD tests is proposed, and the focus is on the classification of bedrock condition by modern classification algorithms (BPNN, MLP, SVM, and RF) to determine the presence or absence of bedrock and its depth range. The implementation of classification process allows for the inclusion of bedrock influence in the back-calculation process, thereby improving the accuracy of modulus results. Results from the four classification algorithms reveals that RF is the most suitable for classifying bedrock depth, exhibiting superior overall performance. The proposed integrated back-calculation process enables a comprehensive and objective evaluation of pavement structural performance, providing a valuable framework for informed decisions making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Picoux, B., El Ayadi, A., Petit, C.: Dynamic response of a flexible pavement submitted by impulsive loading. Soil Dyn. Earthq. Eng. 29(5), 845–854 (2009). https://doi.org/10.1016/j.soildyn.2008.09.001

    Article  Google Scholar 

  2. Fathi, S., Mehravar, M., Rahman, M.: Development of FWD based hybrid back-analysis technique for railway track condition assessment. Transp. Geotech. 38, 100894 (2023). https://doi.org/10.1016/j.trgeo.2022.100894

    Article  Google Scholar 

  3. Zheng, L., Hai-lin, Y., Wan-ping, W., Ping, C.: Dynamic stress and deformation of a layered road structure under vehicle traffic loads: experimental measurements and numerical calculations. Soil Dyn. Earthq. Eng. 39, 100–112 (2012). https://doi.org/10.1016/j.soildyn.2012.03.002

    Article  Google Scholar 

  4. Park, B., Cho, S., Rahbar-Rastegar, R., Nantung, T.E., Haddock, J.E.: Prediction of critical responses in full-depth asphalt pavements using the falling weight deflectometer deflection basin parameters. Constr. Build. Mater. 318, 126019 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126019

    Article  Google Scholar 

  5. Al-Hunaidi, M.O.: Nondestructive evaluation of pavements using spectral analysis of surface waves in the frequency wave-number domain. J. Nondestruct. Eval. 15(2), 71–82 (1996). https://doi.org/10.1007/BF00729136

    Article  Google Scholar 

  6. Fu, G.Z., Zhao, Y.Q., Zhou, C.J., Liu, W.Q.: Determination of effective frequency range excited by falling weight deflectometer loading history for asphalt pavement. Constr. Build. Mater. 235, 117792 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117792

    Article  Google Scholar 

  7. Zhao, Y., Cao, D., Chen, P.: Dynamic backcalculation of asphalt pavement layer properties using spectral element method. Road Mater. Pavement Des. 16(4), 870–888 (2015). https://doi.org/10.1080/14680629.2015.1056214

    Article  Google Scholar 

  8. Wang, H., Li, M.Y.: Comparative study of asphalt pavement responses under FWD and moving vehicular loading. J. Transp. Eng. 142(12), 4016069 (2016). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000902

    Article  Google Scholar 

  9. Lee, S.W., Mahoney, J.P., Jackson, N.C.: Verification of backcalculation of pavement moduli, Transp. Res. Rec. 85–95 (1988)

  10. Cauwelaert, F.V., Alexander, T.D., White, W.B.: Multilayer elastic problem for backcalculating layer moduli in pavement evaluation. Astm Special Tech. Publ. 1026, 171–188 (1989)

    Google Scholar 

  11. Scullion, T., Uzan, J., Paredes, M.: MODULUS: a microcomputer-based backcalculation system. Trans. Res. Record 1260, 180–191 (1990)

    Google Scholar 

  12. Anderson, M.: A data base method for backcalculation of composite pavement layer moduli, Astm Special Technical Publication (1989)

  13. Khazanovich, L., Roesler, J.: DIPLOBACK: neural-network-based backcalculation program for composite pavements. Transp. Res. Rec. 1570, 143–150 (1997). https://doi.org/10.3141/1570-17

    Article  Google Scholar 

  14. Fwa, T., Tan, C.Y., Chan, W.T.: Backcalculation analysis of pavement-layer moduli using genetic algorithms. Transp. Res. Rec. 1570, 134–142 (1997). https://doi.org/10.3141/1570-16

    Article  Google Scholar 

  15. Rakesh, N., Jain, A.K., Reddy, M.A., Reddy, K.S.: Artificial neural networks-genetic algorithm based model for backcalculation of pavement layer moduli. Int. J. Pavement Eng. 7(3), 221–230 (2006). https://doi.org/10.1080/10298430500495113

    Article  Google Scholar 

  16. Rezaei-Tarahomi, A., Kaya, O., Ceylan, H., Kim, S., Gopalakrishnan, K., Brill, D.R.: Development of rapid three-dimensional finite-element based rigid airfield pavement foundation response and moduli prediction models. Transp. Geotech. 13, 81–91 (2017). https://doi.org/10.1016/j.trgeo.2017.08.011

    Article  Google Scholar 

  17. Deng, Y., Luo, X., Zhang, Y., Lytton, R.L.: Determination of complex modulus gradients of flexible pavements using falling weight deflectometer and artificial intelligence. Mater. Struct. 53(4), 100 (2020). https://doi.org/10.1617/s11527-020-01528-2

    Article  CAS  Google Scholar 

  18. Deng, Y., Luo, X., Zhang, Y., Cai, S., Huang, K., Shi, X., Lytton, R.L.: Determination of flexible pavement deterioration conditions using long-term pavement performance database and artificial intelligence-based finite element model updating. Struct. Control. Health Monit. 28(2), e2671 (2021). https://doi.org/10.1002/stc.2671

    Article  Google Scholar 

  19. Deng, Y., Zhang, Y., Shi, X.: Feasibility of determining asphalt pavement condition from falling weight deflectometer test and finite element model updating. Philos. Trans. Royal Soc. A 381(2254), 20220168 (2023). https://doi.org/10.1098/rsta.2022.0168

    Article  ADS  Google Scholar 

  20. Deng, Y., Luo, X., Wang, H.: Backcalculation of damage density of in-service asphalt pavements using artificial intelligence-based finite element model updating. Fatigue Fract. Eng. Mater. Struct. 45(3), 671–686 (2022). https://doi.org/10.1111/ffe.13624

    Article  Google Scholar 

  21. Burmister, D.M.: The general theory of stresses and displacements in layered soil systems. III. J. Appl. Phys. 16(5), 296–302 (2004). https://doi.org/10.1063/1.1707590

    Article  ADS  Google Scholar 

  22. Cai, Y.C., Sangghaleh, A., Pan, E.: Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements. Comput. Geotech. 65, 250–257 (2015). https://doi.org/10.1016/j.compgeo.2014.12.014

    Article  Google Scholar 

  23. You, L., Yan, K., Hu, Y., Zollinger, D.G.: Spectral element solution for transversely isotropic elastic multi-layered structures subjected to axisymmetric loading. Comput. Geotech. 72, 67–73 (2016). https://doi.org/10.1016/j.compgeo.2015.11.004

    Article  Google Scholar 

  24. Chang, D., Kang, Y.V., Roesset, J.M., Stokoe, K.H.: Effects of depth to bedrock on deflection basins obtained with dynaflect and falling weight deflectometer test. Transp. Res. Rec. 1355, 8–16 (1992)

    Google Scholar 

  25. Broutin, M.: Assessment of flexible airfield pavements using heavy weight deflectometers: development of a FEM dynamical time-domain analysis for the backcalculation of structural properties. In: Ecole des Ponts ParisTech, Paris (2010)

  26. Wang, Y.J., Zhao, Y.Q., Zhang, M.Y., Fu, G.Z.: Influence of bedrock on the dynamic deflection response and dynamic back-calculation results of asphalt pavement: Insights from the numerical simulation of falling weight deflectometer tests. Constr. Build. Mater. 330, 127252 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127252

    Article  Google Scholar 

  27. Wang, Y.J., Zhao, Y.Q., Sun, Q., Fu, G.Z.: Influence of bedrock on viscoelastic responses and parametric back-calculation results for asphalt pavements and prediction of bedrock depth under FWD tests. Constr. Build. Mater. 377, 131158 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131158

    Article  Google Scholar 

  28. Romanoschi, S.A., Metcalf, J.B.: Effects of interface condition and horizontal wheel loads on the life of flexible pavement structures. Transp. Res. Rec. 1778(1), 123–131 (2001). https://doi.org/10.3141/1778-15

    Article  Google Scholar 

  29. Kruntcheva, M.R., Collop, A.C., Thom, N.H.: Effect of bond condition on flexible pavement performance. J. Transp. Eng. 131(11), 880–888 (2005)

    Article  Google Scholar 

  30. Yoo, P.J., Al-Qadi, I.L., Elseifi, M.A., Janajreh, I.: Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces. Int. J. Pavement Eng. 7(1), 73–86 (2006). https://doi.org/10.1080/10298430500516074

    Article  Google Scholar 

  31. Rebouças Santana, V., de Souza Almeida, M.S., Bressanin, H.W., Almeida Brito, J., Silva Costa, W.G., Da Costa São Mateus, M.D.S.: Effects of overload and layer interface condition on estimated flexible pavement lifespan: case study from BR-116/BA. Transp. Geotech. 34, 100762 (2022). https://doi.org/10.1016/j.trgeo.2022.100762

    Article  Google Scholar 

  32. Cao, D.D., Zhao, Y.Q., Zhang, J.X., Jing, P., Yao, H.: Investigation of the interface condition influence on backcalculated layer properties. J. Trans. Eng. Part B: Pavements 147(3), 4021026 (2021). https://doi.org/10.1061/JPEODX.0000281

    Article  Google Scholar 

  33. Deng, Y.J., Yang, Q.: Rapid evaluation of a transverse crack on a semi-rigid pavement utilising deflection basin data. Road Mater. Pavement Des. 20(4), 929–942 (2019). https://doi.org/10.1080/14680629.2018.1424026

    Article  Google Scholar 

  34. Fu, G.Z., Wang, H., Zhao, Y.Q., Yu, Z.Q., Li, Q.: Non-destructive evaluation of longitudinal cracking in semi-rigid asphalt pavements using FWD deflection data. Struct. Control. Health Monit. 29(10), e3050 (2022). https://doi.org/10.1002/stc.3050

    Article  Google Scholar 

  35. Fu, G.Z., Zhao, Y.Q., Wang, G.Z., Wei, J.C.: Evaluation of the effects of transverse cracking on the falling weight deflectometer data of asphalt pavements. Int. J. Pavement Eng. 23(9), 3198–3211 (2022). https://doi.org/10.1080/10298436.2021.1886295

    Article  CAS  Google Scholar 

  36. Fu, G., Zhao, Y., Ong, G.P., Wang, Y., Lu, J.: Effects of transverse cracks on the backcalculated layer properties of asphalt pavements from non-destructive testing data. J. Nondestruct. Eval. 42(3), 69 (2023). https://doi.org/10.1007/s10921-023-00978-2

    Article  Google Scholar 

  37. Wang, Y.J., Zhao, Y.Q.: Predicting bedrock depth under asphalt pavement through a data-driven method based on particle swarm optimization-back propagation neural network. Constr. Build. Mater. 354, 129165 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129165

    Article  Google Scholar 

  38. Yang, X., Guan, J., Ding, L., You, Z., Lee, V.C.S., Mohd Hasan, M.R., Cheng, X.: Research and applications of artificial neural network in pavement engineering: a state-of-the-art review. J. Traffic Trans. Eng. (English Edition) 8(6), 1000–1021 (2021). https://doi.org/10.1016/j.jtte.2021.03.005

    Article  Google Scholar 

  39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  ADS  Google Scholar 

  40. Hassoun, M.H.: Fundamentals of artificial neural networks. Proc. IEEE 84(6), 906 (1996). https://doi.org/10.1109/JPROC.1996.503146

    Article  Google Scholar 

  41. Cano-Ortiz, S., Pascual-Muñoz, P., Castro-Fresno, D.: Machine learning algorithms for monitoring pavement performance. Autom. Constr. 139, 104309 (2022). https://doi.org/10.1016/j.autcon.2022.104309

    Article  Google Scholar 

  42. Gong, H., Sun, Y., Shu, X., Huang, B.: Use of random forests regression for predicting IRI of asphalt pavements. Constr. Build. Mater. 189, 890–897 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.017

    Article  Google Scholar 

  43. Rizzi, S.A., Doyle, J.F.: Spectral analysis of wave motion in plane solids with boundaries. J. Vib. Acoust. 114(2), 133–140 (1992). https://doi.org/10.1115/1.2930241

    Article  Google Scholar 

  44. Doyle, J.F.: Wave propagation in structures: Spectral analysis using fast discrete Fourier transforms. Springer, New York (1997)

    Book  Google Scholar 

  45. Rizzi, S.A., Doyle, J.F.: A spectral element approach to wave motion in layered solids. J. Vib. Acoust. 114(4), 569–577 (1992). https://doi.org/10.1115/1.2930300

    Article  Google Scholar 

  46. Al-Khoury, R., Kasbergen, C., Scarpas, A., Blaauwendraad, J.: Spectral element technique for efficient parameter identification of layered media: Part II: Inverse calculation. Int. J. Solids Struct. 38(48–49), 8753–8772 (2001)

    Article  Google Scholar 

  47. Al-Khoury, R., Scarpas, A., Kasbergen, C., Blaauwendraad, J.: Spectral element technique for efficient parameter identification of layered media. Part III: viscoelastic aspects. Int. J. Solids Struct. 39(8), 2189–2201 (2002). https://doi.org/10.1016/S0020-7683(02)00079-3

    Article  Google Scholar 

  48. Li, M.Y., Wang, H., Xu, G.J., Xie, P.Y.: Finite element modeling and parametric analysis of viscoelastic and nonlinear pavement responses under dynamic FWD loading. Constr. Build. Mater. 141, 23–35 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.096

    Article  Google Scholar 

  49. D.E. Rumelhart, J.L. Mcclelland, (1986) Parallel distributed processing, Encyclopedia of Database Systems, 45–76.

  50. Ehteram, M., Ahmed, A.N., Ling, L., Fai, C.M., Latif, S.D., Afan, H.A., El-Shafie, A.: Pipeline scour rates prediction-based model utilizing a multilayer perceptron-colliding body algorithm. Water 12(3), 902 (2020)

    Article  Google Scholar 

  51. Aydın, B., Yağuzluk, S., Açıkkar, M.: Prediction of landslide tsunami run-up on a plane beach through feature selected MLP-based model. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.007

    Article  Google Scholar 

  52. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  53. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)

    Article  CAS  PubMed  Google Scholar 

  54. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Acm Trans. Intell. Syst. Technol. 2(3), 27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  55. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  56. De-Prado-Gil, J., Palencia, C., Silva-Monteiro, N., Martínez-García, R.: To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Stud. Constr. Mater. 16, e1046 (2022)

    Google Scholar 

  57. Naser, A.H., Badr, A.H., Henedy, S.N., Ostrowski, K.A., Imran, H.: Application of multivariate adaptive regression splines (MARS) approach in prediction of compressive strength of eco-friendly concrete. Case Stud. Constr. Mater. 17, e1262 (2022)

    Google Scholar 

  58. Zhou, Y., Liu, Y., Wang, N., Han, X., Li, J.: Partial discharge ultrasonic signals pattern recognition in transformer using BSO-SVM based on microfiber coupler sensor. Measurement 201, 111737 (2022). https://doi.org/10.1016/j.measurement.2022.111737

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.51678114), Urumqi Transportation Research Project (Grant No.JSKJ201806), and Shanxi Province Transportation Research Project (Grant No.19-JKKJ-4). The authors gratefully acknowledged their financial support.

Author information

Authors and Affiliations

Authors

Contributions

YW: Conceptualization, Methodology, Data curation, Formal analysis, Writing-original draft, Writing-review and editing; YZ: Conceptualization, Resources, Supervision, Funding acquisition; GF: Methodology, Writing-original draft, Writing-review and editing.

Corresponding author

Correspondence to Yanqing Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests related to this work.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors have agreed for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Y. & Fu, G. Machine Learning Models for Bedrock Condition Classification in Pavement Structure Evaluation: A Comparative Study. J Nondestruct Eval 43, 33 (2024). https://doi.org/10.1007/s10921-024-01048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-024-01048-x

Keywords

Navigation