Skip to main content
Log in

Novel Insights on Spatio-Temporal Analysis for Frequency Modulated Thermal Wave Imaging Using Principal Component Analysis on Glass Fibre Reinforced Polymer Material

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Non-Destructive Testing and Evaluation (NDT&E) is being developed across various segments of the industry for detecting the presence of defects occurring either during the manufacturing or its in-service stage such as cracks, voids, delamination, etc. in a wide variety of materials. Among various NDT&E methodologies, InfraRed Thermography (IRT) gained importance due to its remote, whole-field, safe, and quantitative assessment of industrial and biomaterials. These merits make the IRT a promising approach for inspecting and evaluating various composite structures widely used in aerospace and defense applications. Among the recently introduced IRT techniques, Frequency Modulated Thermal Wave Imaging (FMTWI) ensures the feasibility of implementing moderate peak power heat sources in single experimentation compared to conventional pulse-based and sinusoidally modulated lock-in thermography. The present work enhances the scope of the Principal Component Analysis (PCA)-based IRT named Principal Component Thermography (PCT) by pioneering the application of temporally and spatially reconstructed FMTWI dataset for the first time. This paper explores the PCT-based data processing algorithm to test and evaluate artificially simulated blind hole defects in a Glass Fibre Reinforced Polymer (GFRP) material. The results of PCT obtained for the FMTWI technique highlight the merits of the data-reduced feature map known as Empirical Orthogonal Thermogram (EOT) along with its defect detection capabilities by considering the optimal Principal Component (PC) to reduce the effect of uneven heating on the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The results presented in this manuscript have no associated data.

References

  1. Vavilov, V.P.: Thermal nondestructive testing of materials and products: a review. Russ. J. Nondestruct. Test. 53(10), 707–730 (2017). https://doi.org/10.1134/S1061830917100072

    Article  Google Scholar 

  2. Vavilov, V.: Thermal non destructive testing: short history and state-of-art. In: Proceedings of the 1992 International Conference on Quantitative InfraRed Thermography, QIRT Council, 1992. https://doi.org/10.21611/qirt.1992.028

  3. Vavilov, V.: Thermal NDT: historical milestones, state-of-the-art and trends. Quant. InfraRed Thermogr. J. 11(1), 66–83 (2014). https://doi.org/10.1080/17686733.2014.897016

    Article  Google Scholar 

  4. Maldague, X.: Theory and practice of infrared technology for nondestructive testing. In: Wiley Series in Microwave and Optical Engineering. Wiley, New York (2001)

  5. Vavilov, V.P.: Physical basics of thermal techniques of nondestructive evaluation. In: Ida, N., Meyendorf, N., Eds., Handbook of Advanced Non-Destructive Evaluation. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-30050-4_10-1.

  6. Sakagami, T., Kubo, S.: Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations. Infrared Phys. Technol. 43(3–5), 211–218 (2002). https://doi.org/10.1016/S1350-4495(02)00141-X

    Article  ADS  Google Scholar 

  7. Krapez, J.-C., Lepoutre, F., Balageas, D.: Early detection of thermal contrast in pulsed stimulated thermography. J. Phys. IV 04(C7), C7-47–C−750 (1994). https://doi.org/10.1051/jp4:1994712

    Article  Google Scholar 

  8. Balageas, D.L., Krapez, J.C., Cielo, P.: Pulsed photothermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986). https://doi.org/10.1063/1.336690

    Article  ADS  CAS  Google Scholar 

  9. Pilla, M., Klein, M., Maldague, X., Salerno, A.: New absolute contrast for pulsed thermography. In: QIRT (2002)

  10. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79(5), 2694–2698 (1996). https://doi.org/10.1063/1.362662

    Article  ADS  CAS  Google Scholar 

  11. Almond, D.P., Lau, S.K.: Defect sizing by transient thermography. I. An analytical treatment. J. Phys. D Appl. Phys. 27(5), 1063–1069 (1994). https://doi.org/10.1088/0022-3727/27/5/027

    Article  ADS  CAS  Google Scholar 

  12. Avdelidis, N.P., Almond, D.P., Dobbinson, A., Hawtin, B.C., Ibarra-Castanedo, C., Maldague, X.: Aircraft composites assessment by means of transient thermal NDT. Prog. Aerosp. Sci. 40(3), 143–162 (2004). https://doi.org/10.1016/j.paerosci.2004.03.001

    Article  Google Scholar 

  13. Chung, Y., Lee, S., Kim, W.: Latest advances in common signal processing of pulsed thermography for enhanced detectability: a review. Appl. Sci. 11(24), 12168 (2021). https://doi.org/10.3390/app112412168

    Article  CAS  Google Scholar 

  14. Review of pulsed thermal NDT_ Physical principles, theory and data processing | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0963869515000389?token=4219C0779C295C6C6ACA997EA43F9599AE98FB75AA124BA1E53591DBBC415CE8E7F4FF9C6373DD0F487AE3C69D9FEEA7&originRegion=eu-west-1&originCreation=20221112090302. Accessed 12 Nov 2022

  15. Shepard, S.: Advances in pulsed thermography. Proc. SPIE 44, 1 (2001)

    Google Scholar 

  16. Grischkowsky, D., Balant, A.C.: Optical pulse compression based on enhanced frequency chirping. In: Physics of New Laser Sources, pp. 109–116. Springer, Berlin (1982)

    Chapter  Google Scholar 

  17. Kroszczynski, J.J.: Pulse compression by means of linear-period modulation. Proc. IEEE 57(7), 1260–1266 (1969)

    Article  Google Scholar 

  18. Rani, A., Mulaveesala, R.: Depth resolved pulse compression favourable frequency modulated thermal wave imaging for quantitative characterization of glass fibre reinforced polymer. Infrared Phys. Technol. (2020). https://doi.org/10.1016/j.infrared.2020.103441

    Article  Google Scholar 

  19. Busse, G., Eyerer, P.: Thermal wave remote and nondestructive inspection of polymers. Appl. Phys. Lett. 43(4), 355–357 (1983). https://doi.org/10.1063/1.94335

    Article  ADS  CAS  Google Scholar 

  20. Ghali, V.S., Mulaveesala, R., Takei, M.: Frequency-modulated thermal wave imaging for non-destructive testing of carbon fiber-reinforced plastic materials. Meas. Sci. Technol. 22(10), 104018 (2011). https://doi.org/10.1088/0957-0233/22/10/104018

    Article  ADS  CAS  Google Scholar 

  21. Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl. Phys. Lett. 89(19), 191913 (2006). https://doi.org/10.1063/1.2382738

    Article  ADS  CAS  Google Scholar 

  22. Rani, A., Mulaveesala, R., Kher, V.: An analytical approach for frequency modulated thermal wave imaging for testing and evaluation of glass fiber reinforced polymers. IOPSciNotes 2(1), 014403 (2021). https://doi.org/10.1088/2633-1357/abe5b6

    Article  ADS  Google Scholar 

  23. Subbarao, G.V., Mulaveesala, R.: Quadratic frequency modulated thermal wave imaging for non-destructive testing. Progr. Electromagn. Res. M 26, 11–22 (2012). https://doi.org/10.2528/PIERM12062101

    Article  Google Scholar 

  24. Mulaveesala, R., Tuli, S.: Digitized frequency modulated thermal wave imaging for nondestructive testing. Mater. Eval. 63(10), 1046–1050 (2005)

    CAS  Google Scholar 

  25. Sharma, A., Mulaveesala, R., Dua, G., Arora, V., Kumar, N.: Digitized frequency modulated thermal wave imaging for detection and estimation of osteoporosis. IEEE Sens. J. 21(13), 14003–14010 (2021). https://doi.org/10.1109/JSEN.2020.3043282

    Article  ADS  Google Scholar 

  26. Ghali, V.S., Panda, S.S.B., Mulaveesala, R.: “Barker coded thermal wave imaging for defect detection in carbon fbre-reinfor. Non-Destruct. Test. Cond. Monit. 53(11), 621–624 (2011). https://doi.org/10.1784/insi.2011.53.11.621

    Article  CAS  Google Scholar 

  27. Arora, V., Mulaveesala, R.: Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures. Opt. Lasers Eng. 93, 36–39 (2017). https://doi.org/10.1016/j.optlaseng.2017.01.009

    Article  Google Scholar 

  28. Mulaveesala, R., Tuli, S., Predeep, P., Prasanth,S., Prasad, A.S.: Applications of frequency modulated thermal wave imaging for non-destructive characterization. In: AIP Conference Proceedings, Kollam (Kerala): AIP, 2008, pp. 15–22. https://doi.org/10.1063/1.2927545

  29. Kaur, K., Sharma, A., Rani, A., Kher, V., Mulaveesala, R.: Physical insights into principal component thermography. Insight 62(5), 277–280 (2020). https://doi.org/10.1784/insi.2020.62.5.277

    Article  Google Scholar 

  30. Dua, G., Arora, V., Mulaveesala, R.: Defect detection capabilities of pulse compression based infrared non-destructive testing and evaluation. IEEE Sens. J. 21(6), 7940–7947 (2021). https://doi.org/10.1109/JSEN.2020.3046320

    Article  ADS  CAS  Google Scholar 

  31. Milovanović, B., Gaši, M., Gumbarević, S.: Principal component thermography for defect detection in concrete. Sensors (2020). https://doi.org/10.3390/s20143891

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58(4), 521–528 (2002). https://doi.org/10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  33. Shlens, J.: A tutorial on principal component analysis. arXiv, 03 Apr 2014. https://arxiv.org/abs/1404.1100. Accessed 11 Nov 2022

  34. Yousefi, B., Sfarra, S., Sarasini, F., Castanedo, C.I., Maldague, X.P.V.: Low-rank sparse principal component thermography (sparse-PCT): Comparative assessment on detection of subsurface defects. Infrared Phys. Technol. 98, 278–284 (2019). https://doi.org/10.1016/j.infrared.2019.03.012

    Article  ADS  CAS  Google Scholar 

  35. Yousefi, B., Sfarra, S., Ibarra-Castanedo, C., Maldague, X.: Comparative analysis on Thermal Non-Destructive Testing Imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). Infrared Phys. Technol. (2017). https://doi.org/10.1016/j.infrared.2017.06.008

    Article  Google Scholar 

  36. Kaur, K., Mulaveesala, R.: Experimental investigation on noise rejection capabilities of pulse compression favourable frequency-modulated thermal wave imaging. Electron. Lett. 55(6), 352–353 (2019). https://doi.org/10.1049/el.2018.8047

    Article  ADS  Google Scholar 

  37. Mulaveesala, R., Vaddi, J.S., Singh, P.: Pulse compression approach to infrared nondestructive characterization. Rev. Sci. Instrum. 79(9), 094901 (2008). https://doi.org/10.1063/1.2976673

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Efficient pulse compression favourable thermal excitation scheme for non‐destructive testing using infrared thermography: a numerical study. https://ietresearch.onlinelibrary.wiley.com/doi/epdf/https://doi.org/10.1049/el.2020.0914.Accessed 28 Sep 2023

  39. Pasha, M.D., Subbarao, G.V., Suresh, B., Tabassum, S.: Inspection of defects in CFRP based on principal components. IJRTE 8(3), 2367–2370 (2019). https://doi.org/10.35940/ijrte.C4658.098319

    Article  Google Scholar 

  40. Griefahn, D., Wollnack, J., Hintze, W.: Principal component analysis for fast and automated thermographic inspection of internal structures in sandwich parts. J. Sens. Sens. Syst. (2014). https://doi.org/10.5194/jsss-3-105-2014

Download references

Acknowledgements

Authors acknowledges for the support provided through his constructive suggestions and continuous encouragement by Mr. Mulaveesala Venkata Jagannadharao, Chukkavanipalem, Dharmavaram, Vizaianagaram, Andhra Pradesh, India.

Funding

No funding available for this work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ms. Priyanka Das and Dr. Vanita Arora contributed by conducting experimentation and post-processing. Prof. Ravibabu Mulaveesala contributed for the idea and the supervising with suggestions.

Corresponding author

Correspondence to Ravibabu Mulaveesala.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

All the authors of this manuscript provided their consent to the publisher to publish the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Arora, V. & Mulaveesala, R. Novel Insights on Spatio-Temporal Analysis for Frequency Modulated Thermal Wave Imaging Using Principal Component Analysis on Glass Fibre Reinforced Polymer Material. J Nondestruct Eval 43, 34 (2024). https://doi.org/10.1007/s10921-024-01046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-024-01046-z

Keywords

Navigation