Skip to main content
Log in

Ising Model Simulation and Empirical Research of Barkhausen Noise

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, Monte Carlo simulations are performed based on the two-dimensional Ising model with the objective of matching the simulated magnetic Barkhausen noise (MBN) signals with the measured MBN signals obtained from empirical research on bearing steel of different hardness levels. Firstly, the methods for obtaining simulated MBN signals based on the Ising model are studied. This paper suggests that simulated MBN signals obtained by applying a digital filter to the simulated magnetization curve, both in the time domain and frequency spectrum, are closer to the actual measured signals. Secondly, the influencing factors of the two-dimensional Ising model are studied, including lattice size (N), temperature (T), neighbor interaction (J), external magnetic field (H(t)), number of simulation points per period (\(P_{sim}\)) and Monte Carlo step (MCS). Furthermore, the simulated MBN signals and their feature diagrams under different temperatures and neighbor interactions are plotted. Finally, a method is proposed to match the simulated MBN signals with the actual measured MBN signals using scaling and shifting, reducing the relative error between the simulated and measured MBN signal features to within 7%. This method makes it possible to generate simulated MBN signals at different hardness levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ktena, A., Hristoforou, E., Gerhardt, G.J., Missell, F.P., Landgraf, F.J., Rodrigues, D.L., Jr., Alberteris-Campos, M.: Barkhausen noise as a microstructure characterization tool. Physica B: Condens. Matter 435, 109–112 (2014)

    Article  ADS  CAS  Google Scholar 

  2. Caldas-Morgan, M., Padovese, L.: Fast detection of the magnetic easy axis on steel sheet using the continuous rotational Barkhausen method. NDT & E Int. 45(1), 148–155 (2012)

    Article  CAS  Google Scholar 

  3. Samimi, A.A., Krause, T.W., Clapham, L.: Multi-parameter evaluation of magnetic Barkhausen noise in carbon steel. J. Nondestruct. Eval. 35(3), 1–8 (2016)

    Article  Google Scholar 

  4. Honkanen, M., Santa-aho, S., Laurson, L., Eslahi, N., Foi, A., Vippola, M.: Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy-effect of microstructural steel features on Barkhausen noise. Acta Mater. 221, 117378 (2021)

    Article  CAS  Google Scholar 

  5. Ghanei, S., Alam, A.S., Kashefi, M., Mazinani, M.: Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic Barkhausen noise technique. Mater. Sci. Eng. 607, 253–260 (2014)

    Article  CAS  Google Scholar 

  6. Zhang, Y., Liu, W., Li, K., Wang, P., Hang, C., Chen, Y., Han, X., Gao, W.: Application of a back-propagation neural network for mechanical properties prediction of ferromagnetic materials by magnetic Barkhausen noise technique. Insight: Non-Destr. Test. Cond. 61(2), 95–99 (2019)

    Article  Google Scholar 

  7. Sorsa, A., Leiviskä, K., Santa-aho, S., Lepistö, T.: Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement. NDT & E Int. 46, 100–106 (2012)

    Article  CAS  Google Scholar 

  8. Kasai, N., Koshino, H., Sekine, K., Kihira, H., Takahashi, M.: Study on the effect of elastic stress and microstructure of low carbon steels on Barkhausen noise. J. Nondestruct. Eval. 32, 277–285 (2013)

    Article  Google Scholar 

  9. Samimi, A.A., Krause, T.W., Clapham, L.: Stress response of magnetic Barkhausen noise in submarine hull steel: a comparative study. J. Nondestruct. Eval. 35, 1–6 (2016)

    Article  Google Scholar 

  10. Krause, T.W., Atherton, D.: High resolution magnetic Barkhausen noise measurements. NDT & E Int. 27(4), 201–207 (1994)

    Article  Google Scholar 

  11. Kim, D.-W., Kwon, D.: Quantification of the Barkhausen noise method for the evaluation of time-dependent degradation. J. Magn. Magn. Mater. 257(2–3), 175–183 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Moorthy, V., Shaw, B., Evans, J.: Evaluation of tempering induced changes in the hardness profile of case-carburised EN36 steel using magnetic Barkhausen noise analysis. NDT & E Int. 36(1), 43–49 (2003)

    Article  CAS  Google Scholar 

  13. Stupakov, A., Farda, R., Neslušan, M., Perevertov, A., Uchimoto, T.: Evaluation of a nitrided case depth by the magnetic Barkhausen noise. J. Nondestruct. Eval. 36, 1–9 (2017)

    Article  Google Scholar 

  14. Franco, F.A., González, M., De Campos, M., Padovese, L.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. J. Nondestruct. Eval. 32(1), 93–103 (2013)

    Article  Google Scholar 

  15. Schibler, J., D’Ambra, C., Roberts, M., Manuel, M.V., Krause, T.W., Saleem, A.: Temper embrittlement in HY-80 steel: Microstructure, magnetic and microhardness properties. NDT & E Int. 132, 102728 (2022)

    Article  CAS  Google Scholar 

  16. Hang, C., Liu, W., Dobmann, G., Chen, W., Li, L., Wang, P., Lin, Y., Zhu, H., Li, K.: Abnormal signals elimination in hardness evaluation using Barkhausen noise and tangential magnetic field. J. Nondestruct. Eval. 42(1), 15 (2023)

    Article  Google Scholar 

  17. Perković, O., Dahmen, K., Sethna, J.P.: Avalanches, Barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75(24), 4528 (1995)

    Article  ADS  PubMed  Google Scholar 

  18. Perez-Benitez, J.A., Capo-Sanchez, J., Padovese, L.R.: Simulation of the Barkhausen noise using random field ising model with long-range interaction. Comput. Mater. Sci. 44(3), 850–857 (2009)

    Article  CAS  Google Scholar 

  19. Xu, J., Silevitch, D., Dahmen, K., Rosenbaum, T.: Barkhausen noise in the random field Ising magnet Nd\(_2\)Fe\(_{14}\)B. Phys. Rev. B 92(2), 024424 (2015)

    Article  ADS  Google Scholar 

  20. Sandvik, A.W.: Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model. Phys. Rev. B 56(18), 11678 (1997)

  21. Wu, F.-Y.: The potts model. Rev. Modern Phys. 54(1), 235 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yamaguchi, K., Tanaka, S., Watanabe, H., Nittono, O., Takagi, T., Yamada, K.: Monte Carlo simulation for Barkhausen noise. IEEE Trans. Magnet. 40(2), 884–887 (2004)

    Article  ADS  Google Scholar 

  23. Yamaguchi, K., Tanaka, S., Nittono, O., Takagi, T., Yamada, K.: Monte Carlo simulation of dynamic magnetic processes for spin system with local defects. Phys. Condensed Matter 343(1–4), 298–302 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Sahai, M., Sasi, B., Rao, C.B., Jayakumar, T.: A study on magnetic Barkhausen emission using Monte Carlo simulation. Insight: Non-Destr. Test. Cond. Monitor. 54(5), 262–266 (2012)

    Article  Google Scholar 

  25. Li, L., Luo, X.: Monte Carlo simulation for relationship between magnetic Barkhausen noise and elastic stress of steel. Adv. Mechan. Eng. 8(7), 1687814016656536 (2016)

    Google Scholar 

  26. Wang, Z., He, C., Liu, X., Wu, B.: A new method for modeling of magnetic Barkhausen noise about two-phase ferromagnetic material. Electromagnet Nondestruct. Eval. XXII 44, 56 (2019)

    Google Scholar 

  27. Lo, W., Pelcovits, R.A.: Ising model in a time-dependent magnetic field. Phys. Rev. A 42(12), 7471 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3-4), 117 (1944)

  29. Binder, K., Heermann, D.W., Binder, K.: Monte Carlo Simulation in Statistical Physics, vol. 8. Springer, Berlin Heidelberg (1992)

    Book  Google Scholar 

  30. Hang, C., Liu, W., Dobmann, G., Chen, W., Wang, P., Li, K.: Feature extraction and evaluation for quantitative prediction of hardness in bearing steel based on magnetic Barkhausen noise. NDT & E Int. 102937 (2023)

  31. Yamaguchi, K., Tanaka, S., Watanabe, H., Nittono, O., Takagi, T., Yamada, K.: Monte Carlo simulation for Barkhausen noise. IEEE Trans. Magnet. 40(2), 884–887 (2004)

    Article  ADS  Google Scholar 

  32. Zöllner, D., Streitenberger, P.: Three-dimensional normal grain growth: Monte Carlo Potts model simulation and analytical mean field theory. Script. Mater. 54(9), 1697–1702 (2006)

    Article  Google Scholar 

  33. Hang, C., Liu, W., Wang, P.: A method of Barkhausen noise feature extraction based on an adaptive threshold. Appl. Sci. 9(15), 2964 (2019)

    Article  Google Scholar 

  34. Vashista, M., Moorthy, V.: On the shape of the magnetic Barkhausen noise profile for better revelation of the effect of microstructures on the magnetisation process in ferritic steels. J. Magnet. Magnet. Mater. 393, 584–592 (2015)

    Article  ADS  CAS  Google Scholar 

  35. Zhang, S., Shi, X., Udpa, L., Deng, Y.: Micromagnetic measurement for characterization of ferromagnetic materials’ microstructural properties. AIP Adv. 8(5), (2018)

Download references

Funding

This work was supported in part by National Key Research and Development Program of China (2018YFB2003304), in part by National Natural Science Foundation of China (61871218), in part by National Key Research and Development Program of China (2018YFB2100903, 2017YFF0107304, 2017YFF0209700), and in part by Fundamental Research Funds for the Central Universities (NJ2019007, NJ2020014).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Hang: Conceptualization, Methodology, Software, Writing - Original Draft. Wenbo Liu: Supervision, Writing - Review & Editing. Gerd Dobmann: Methodology, Writing - Review & Editing. Yin Wu: Writing - Review & Editing. Wangcai Chen: Writing - Review & Editing. Ping Wang: Funding acquisition, Supervision.

Corresponding author

Correspondence to Cheng Hang.

Ethics declarations

Conflict of Interest

The authors declared that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets are available from the corresponding author on reasonable request.

Code availability

The code is available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 26488 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, C., Liu, W., Dobmann, G. et al. Ising Model Simulation and Empirical Research of Barkhausen Noise. J Nondestruct Eval 43, 20 (2024). https://doi.org/10.1007/s10921-023-01037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01037-6

Keywords

Navigation