Skip to main content
Log in

Active Thermography Inspection of Surface-whitened Mortars – Measurement of Surface Spectral Absorptivity for Investigation of Efficient Heating Light Wavelengths

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The surface spectral absorptivity of surface-whitened mortars due to the occurrence of efflorescence (i.e., mortars whose surface was covered with calcium carbonate) was measured, and the relationship between the spectral absorptivity and inspection capability of active thermography inspection was investigated. The spectral absorptivity of mortars increased significantly at a wavelength of approximately 3000 nm regardless of the presence/absence of the discoloration. Experiments for mortar specimens using optical lights with wavelengths in the visible, short wavelength, and medium/long wavelength ranges showed that the heating efficiency and defect detection capability of active thermography inspection were correlated with the surface spectral absorptivity, and were higher when long wavelength light was used as a heater. Defects in the surface-whitened mortar specimen were detected more efficiently when the specimen was heated using a CO2 laser, whose wavelength is in the long wavelength range, than when using an optical light having a wavelength in the visible/short wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shepard, S.M.: Flash thermography of aerospace composites. In: IV Conferencia Panamericana de END Buenos Aires, Vol. 7, p. 26. (2007)

  2. Vavilov, V.P., Pawar, S.S.: A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography. Polym. Test. 44, 224–233 (2015). https://doi.org/10.1016/j.polymertesting.2015.04.013

    Article  CAS  Google Scholar 

  3. Wang, F., Liu, J., Dong, B., Gong, J., Peng, W., Wang, Y., Chen, M., Liu, G.: Blind image separation for the debonding defects recognition of the solid propellant rocket motor cladding layer using pulse thermography. Measurement. 174, 108997 (2021). https://doi.org/10.1016/j.measurement.2021.108997

    Article  Google Scholar 

  4. D.’Accardi, E., Palumbo, D., Errico, V., Fusco, A., Angelastro, A., Galietti, U.: Analysing the probability of detection of shallow spherical defects by means of Pulsed Thermography. J. Nondestruct Eval. 42(1), 27 (2023). https://doi.org/10.1007/s10921-023-00936-y

    Article  Google Scholar 

  5. Sfarra, S., Yao, Y., Zhang, H., Perilli, S., Scozzafava, M., Avdelidis, N.P., Maldague, X.P.V.: Precious walls built in indoor environments inspected numerically and experimentally within long-wave infrared (LWIR) and radio regions. J. Therm. Anal. Calorim. 137, 1083–1111 (2019). https://doi.org/10.1007/s10973-019-08005-1

    Article  CAS  Google Scholar 

  6. Pan, X., Xiang, T., He, Y., Wu, J., Xia, H., Lei, T., Wang, J.: A crack detection method for aero-engine blade based on air-flow thermography. J. Nondestruct Eval. 42(1), 22 (2023). https://doi.org/10.1007/s10921-023-00928-y

    Article  Google Scholar 

  7. Ishikawa, M., Ando, M., Koyama, M., Nishino, H.: Active thermographic inspection of carbon fiber reinforced plastic laminates using laser scanning heating. Compos. Struct. 209, 515–522 (2019). https://doi.org/10.1016/j.compstruct.2018.10.113

    Article  Google Scholar 

  8. Archer, T., Beauchêne, P., Passilly, B., Roche, J.M.: Use of laser spot thermography for the non-destructive imaging of thermal fatigue microcracking of a coated ceramic matrix composite. Quant. InfraRed Thermogr J. 18(3), 141–158 (2021). https://doi.org/10.1080/17686733.2019.1705732

    Article  Google Scholar 

  9. Roemer, J., Khawaja, H., Moatamedi, M., Pieczonka, L.: Data processing scheme for laser spot thermography applied for nondestructive testing of composite laminates. J. Nondestruct Eval. 42(1), 21 (2023). https://doi.org/10.1007/s10921-023-00932-2

    Article  Google Scholar 

  10. Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., Thomas, R.L.: Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 71(6), 2418–2421 (2000). https://doi.org/10.1063/1.1150630

    Article  ADS  CAS  Google Scholar 

  11. Morbidini, M., Cawley, P.: The detectability of cracks using sonic IR. J. Appl. Phys. 105(9), 093530 (2009). https://doi.org/10.1063/1.3125444

    Article  ADS  CAS  Google Scholar 

  12. Guo, X., Vavilov, V.: Crack detection in aluminum parts by using ultrasound-excited infrared thermography. Infrared Phys. Technol. 61, 149–156 (2013). https://doi.org/10.1016/j.infrared.2013.08.003

    Article  ADS  CAS  Google Scholar 

  13. Pan, M., He, Y., Tian, G., Chen, D., Luo, F.: Defect characterisation using pulsed eddy current thermography under transmission mode and NDT applications. NDT & E Int. 52, 28–36 (2012). https://doi.org/10.1016/j.ndteint.2012.08.007

    Article  CAS  Google Scholar 

  14. He, Y., Tian, G., Pan, M., Chen, D.: Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Compos. Struct. 109, 1–7 (2014). https://doi.org/10.1016/j.compstruct.2013.10.049

    Article  Google Scholar 

  15. He, M., Zhang, L., Zheng, W., Feng, Y.: Crack detection based on a moving mode of eddy current thermography method. Measurement. 109, 119–129 (2017). https://doi.org/10.1016/j.measurement.2017.05.041

    Article  ADS  Google Scholar 

  16. Wiggenhauser, H.: Active IR-applications in civil engineering. Infrared Phys. Technol. 43(3–5), 233–238 (2002). https://doi.org/10.1016/S1350-4495(02)00145-7

    Article  ADS  Google Scholar 

  17. Avdelidis, N.P., Moropoulou, A.: Applications of infrared thermography for the investigation of historic structures. J Cult. Herit. 5(1), 119–127 (2004). https://doi.org/10.1016/j.culher.2003.07.002

    Article  Google Scholar 

  18. Maierhofer, C., Arndt, R., Röllig, M., Rieck, C., Walther, A., Scheel, H., Hillemeier, B.: Application of impulse-thermography for non-destructive assessment of concrete structures. Cem. Concr Compos. 28(4), 393–401 (2006). https://doi.org/10.1016/j.cemconcomp.2006.02.011

    Article  CAS  Google Scholar 

  19. Kurita, K., Oyado, M., Tanaka, H., Tottori, S.: Active infrared thermographic inspection technique for elevated concrete structures using remote heating system. Infrared Phys. Technol. 52(5), 208–213 (2009). https://doi.org/10.1016/j.infrared.2009.07.010

    Article  ADS  CAS  Google Scholar 

  20. Schlichting, J., Brauser, S., Pepke, L.A., Maierhofer, C., Rethmeier, M., Kreutzbruck, M.: Thermographic testing of spot welds. NDT & E Int. 48, 23–29 (2012). https://doi.org/10.1016/j.ndteint.2012.02.003

    Article  CAS  Google Scholar 

  21. Broberg, P.: Surface crack detection in welds using thermography. NDT & E Int. 57, 69–73 (2013). https://doi.org/10.1016/j.ndteint.2013.03.008

    Article  Google Scholar 

  22. Sharp, N., Adams, D., Caruthers, J., David, A., Suchomel, M.: Lithium-ion Battery electrode inspection using pulse thermography. NDT & E Int. 64, 41–51 (2014). https://doi.org/10.1016/j.ndteint.2014.02.006

    Article  CAS  Google Scholar 

  23. Doroshtnasir, M., Worzewski, T., Krankenhagen, R., Röllig, M.: On-site inspection of potential defects in wind turbine rotor blades with thermography. Wind Energy. 19(8), 1407–1422 (2016). https://doi.org/10.1002/we.1927

    Article  ADS  Google Scholar 

  24. Almond, D.P., Peng, W.: Thermal imaging of composites. J. Microsc. 201(2), 163–170 (2001). https://doi.org/10.1046/j.1365-2818.2001.00762.x

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  25. Avdelidis, N.P., Hawtin, B.C., Almond, D.P.: Transient thermography in the assessment of defects of aircraft composites. NDT & E Int. 36(6), 433–439 (2003). https://doi.org/10.1016/S0963-8695(03)00052-5

    Article  CAS  Google Scholar 

  26. Maierhofer, C., Myrach, P., Reischel, M., Steinfurth, H., Röllig, M., Kunert, M.: Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations. Compos. Part. B: Eng. 57, 35–46 (2014). https://doi.org/10.1016/j.compositesb.2013.09.036

    Article  CAS  Google Scholar 

  27. Vavilov, V., Chulkov, A., Dubinskii, S., Burleigh, D., Shpilnoi, V., Derusova, D., Zhvyrblia, V.: Nondestructive testing of composite T-Joints by TNDT and other methods. Polym. Test. 94, 107012 (2021). https://doi.org/10.1016/j.polymertesting.2020.107012

    Article  CAS  Google Scholar 

  28. Carvalho, M.S., Martins, A.P., Santos, T.G.: Simulation and validation of thermography inspection for components produced by additive manufacturing. Appl. Therm. Eng. 159, 113872 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113872

    Article  CAS  Google Scholar 

  29. Silva, H., Martins, A., Machado, M.A., Santos, T.G., Carvalho, M.S.: Double active thermographic inspection of additive manufacturing composites: Numerical modelling and validation. Measurement. 218, 113212 (2023). https://doi.org/10.1016/j.measurement.2023.113212

    Article  Google Scholar 

  30. Dow, C., Glasser, F.P.: Calcium carbonate efflorescence on Portland cement and building materials. Cem. Concr Res. 33(1), 147–154 (2003). https://doi.org/10.1016/S0008-8846(02)00937-7

    Article  CAS  Google Scholar 

  31. Brocken, H., Nijland, T.G.: White efflorescence on brick masonry and concrete masonry blocks, with special emphasis on sulfate efflorescence on concrete blocks. Constr. Build. Mater. 18(5), 315–323 (2004). https://doi.org/10.1016/j.conbuildmat.2004.02.004

    Article  Google Scholar 

  32. Ludwig, N., Rosina, E.: Dynamic IRT for the frescoes assessment: The study case of Danza Macabra in Clusone (Italy). Proc. SPIE 5782 Thermosense XXVII. (2005). https://doi.org/10.1117/12.604648

    Article  ADS  Google Scholar 

  33. Ishikawa, M., Tsukagoshi, M., Kasano, H., Nishino, H.: Influence of composition and surface discoloration of concrete on active thermographic nondestructive inspection. Measurement. 168, 108395 (2021). https://doi.org/10.1016/j.measurement.2020.108395

    Article  Google Scholar 

  34. FLIR: User’s manual FLIR A3xx series. (2011)

  35. de LÉclarage Commision Internationale: CIE 15: 2004 Technical Report Colorimetry (2004)

  36. Shimadzu, Corporation: The Structure of a Spectrophotometer. Shimadzu Corporation website. https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/fundamentals-uv/structure.html. Accessed 18 October 2023

  37. Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961). https://doi.org/10.1063/1.1728417

    Article  ADS  CAS  Google Scholar 

  38. Avdelidis, N.P., Moropoulou, A.: Emissivity considerations in building thermography. Energ. Build. 35(7), 663–667 (2003). https://doi.org/10.1016/S0378-7788(02)00210-4

    Article  Google Scholar 

  39. Barreira, E., de Freitas, V.P.: Evaluation of building materials using infrared thermography. Constr. Build. Mater. 20(1), 218–224 (2007). https://doi.org/10.1016/j.conbuildmat.2005.06.049

    Article  Google Scholar 

  40. Marinetti, S., Cesaratto, P.G.: Emissivity estimation for accurate quantitative thermography. NDT & E Int. 51, 127–134 (2012). https://doi.org/10.1016/j.ndteint.2012.06.001

    Article  Google Scholar 

Download references

Acknowledgements

The surface absorptivity of the specimens in the medium/long wavelength range was measured at Tokyo Metropolitan Industrial Technology Research Institute.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Masashi Ishikawa conceptualized the study, conducted the experiments, and wrote the main manuscript text, Akira Emoto designed the experiments and interpreted the results, Yoshihiro Suto conducted experiments and prepared figures, and Hideo Nishino supervised and evaluated the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Masashi Ishikawa.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, M., Emoto, A., Suto, Y. et al. Active Thermography Inspection of Surface-whitened Mortars – Measurement of Surface Spectral Absorptivity for Investigation of Efficient Heating Light Wavelengths. J Nondestruct Eval 43, 7 (2024). https://doi.org/10.1007/s10921-023-01026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01026-9

Keywords

Navigation