Skip to main content
Log in

Magnetic Incremental Permeability of Elastically Deformed Iron and Nickel

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The field dependences of the signal of induction transducer U~(H), proportional to the magnetic incremental permeability, have been measured on nickel and iron subjected to both elastic compression and tension. The inflections and additional maxima on the U~(H) curves are observed for nickel under tension and for iron under compression. The appearance of the features on the U~(H) curves is traceable to the induction of magnetic texture of the “easy-plane” type caused by elastic deformation of nickel and iron samples. These features appear only if the signs of magnetostriction and applied load are opposite. Only in this case, there is the possibility of estimation of applied mechanical stresses and residual stresses (after annealing). This can be useful for technical diagnostics of objects made of ferromagnetic materials with different signs of magnetostriction. The proposed technique is makes it possible to estimate the “easy-axis” magnetostriction constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data is provided in the manuscript.

References

  1. Prevéy, P.S., Vander Voort, G., Friel, J.: Current applications of x-ray diffraction residual stress measurement. Dev. Mater. Charact. Technol. 1996, 103–110 (1996)

    Google Scholar 

  2. Fitzpatrick, M.E., Fry, A.T., Holdway, P., Kandil, F.A., Shackleton, J., Suominen, L.: Determination of residual stresses by x-ray diffraction. Meas. Good Pract. Guide 52, 1–10 (2005)

    Google Scholar 

  3. Bray, D.E., Junghans, P.: Application of the LCR ultrasonic technique for evaluation of post-weld heat treatment in steel plates. NDT E Int. 28, 235–242 (1995). https://doi.org/10.1016/0963-8695(95)00020-X

    Article  Google Scholar 

  4. Duquennoy, M., Ouaftouh, M., Qian, M.L., Jenot, F., Ourak, M.: Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers. NDT E Int. 34, 355–362 (2001). https://doi.org/10.1016/S0963-8695(00)00075-X

    Article  CAS  Google Scholar 

  5. Marusina, M.Y., Fedorov, A.V., Bychenok, V.A., et al.: Evaluation of the influence of external factors in ultrasonic testing of stress-strain states. Meas. Tech. 59, 1165–1169 (2017). https://doi.org/10.1007/s11018-017-1109-3

    Article  Google Scholar 

  6. Bozorth, R.M.: Ferromagnetism. Wiley, Hoboken (1993)

    Book  Google Scholar 

  7. Jiles, D.C., Kiarie, W.: An integrated model of magnetic hysteresis, the magneto-mechanical effect, and the Barkhausen effect. IEEE Trans. Magn. 57(2), 1–11 (2020). https://doi.org/10.1109/TMAG.2020.3034208

    Article  Google Scholar 

  8. Schneider, E., Altpeter, I., Theiner, W.: Nondestructive determination of residual and applied stress by micro-magnetic and ultrasonic methods. In: Ruud, C.O., Green, R.E. (eds.) Nondestructive Methods for Material Property Determination. Springer, Boston (1984). https://doi.org/10.1007/978-1-4684-4769-9_10

    Chapter  Google Scholar 

  9. Jiles, D.C.: Review of magnetic methods for nondestructive evaluation. NDT Int. 21(5), 311–319 (1988). https://doi.org/10.1016/0308-9126(88)90189-7

    Article  Google Scholar 

  10. Novikov, V.F., Fateev, I.G.: Magnetic hysteresis under simultaneous action of static and dynamic stresses. Soviet J. NDT. 18, 489 (1982)

    Google Scholar 

  11. Dobmann, G.: Non-destructive testing for ageing management of nuclear power components. In: Tsvetkov, P. (ed.) Nuclear Power: Control Reliability and Human Factors. Intechopen, London (2011)

    Google Scholar 

  12. Gur, C.H.: Review of residual stress measurement by magnetic Barkhausen noise technique. Mater. Perform. Charact. 7(4), 504–525 (2018). https://doi.org/10.1520/MPC20170080

    Article  MathSciNet  ADS  Google Scholar 

  13. Gauthier, J., Krause, T.W., Atherton, D.L.: Measurement of residual stress in steel using the magnetic Barkhausen noise technique. NDT E Int. 31(1), 23–31 (1998). https://doi.org/10.1016/S0963-8695(97)00023-6

    Article  CAS  Google Scholar 

  14. Kashefi, M., Krause, T.W., Underhill, P.R., Saleem, A., Farrell, S.P.: Decoupling the effect of stress and microstructure on MBN response in cast Q1N steel. Mater. Sci. Technol. 37(15), 1225–1235 (2021). https://doi.org/10.1080/02670836.2021.1991077

    Article  CAS  ADS  Google Scholar 

  15. Honkanen, M., Santa-aho, S., Laurson, L., Eslahi, N., Foi, A., Vippola, M.: Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy-effect of microstructural steel features on Barkhausen noise. Acta Mater. 221, 117378 (2021). https://doi.org/10.1016/j.actamat.2021.117378

    Article  CAS  Google Scholar 

  16. Vengrinovich, V., Vintov, D., Prudnikov, A., Podugolnikov, P., Ryabtsev, V.: Magnetic Barkhausen effect in steel under biaxial strain/stress: influence on stress measurement. J. Nondestr. Eval. 38, 52 (2019). https://doi.org/10.1007/s10921-019-0576-7

    Article  Google Scholar 

  17. Kashefi, M., Krause, T.W., Underhill, P.R., Wowk, D.: On the combined effect of elastic and plastic strain on magnetic Barkhausen noise signals. J. Nondestr. Eval. 42, 55 (2023). https://doi.org/10.1007/s10921-023-00970-w

    Article  Google Scholar 

  18. Matsumoto, T., Uchimoto, T., Takagi, T., Dobmann, G., Ducharne, B., Oozono, S., Yuya, H.: Investigation of electromagnetic nondestructive evaluation of residual strain in low carbon steels using the eddy current magnetic signature (EC-MS) method. J. Magn. Magn. Mater. 479, 212–221 (2019). https://doi.org/10.1016/j.jmmm.2019.01.103

    Article  CAS  ADS  Google Scholar 

  19. Abu-Nabah, B.A., Yu, F., Hassan, W.T., Blodgett, M.P., Nagy, P.B.: Eddy current residual stress profiling in surface treated engine alloys. Nondestr. Test. Eval. 24(1–2), 209–232 (2009). https://doi.org/10.1080/10589750802245280

    Article  CAS  Google Scholar 

  20. Ryu, K.S., Nahm, S.H., Park, J.S., Yu, K.M., Kim, Y.B., Son, D.: A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability. J. Magn. Magn. Mater. 251, 196–201 (2002). https://doi.org/10.1016/S0304-8853(02)00574-7

    Article  CAS  ADS  Google Scholar 

  21. Gupta, B., Uchimoto, T., Ducharne, B., Sebald, G., Miyazaki, T., Toshiyuki, T.: Magnetic incremental permeability non-destructive evaluation of 12 Cr-Mo-W-V steel creep test samples with varied ageing levels and thermal treatments. NDT E Int. 104, 42–50 (2019). https://doi.org/10.1016/j.ndteint.2019.03.006

    Article  CAS  Google Scholar 

  22. Nichipuruk, A.P., Rozenfel’d, E.V., Ogneva, M.S., Stashkov, A.N., Korolev, A.V.: An experimental method for evaluating the critical fields of moving domain boundaries in plastically tension-deformed low-carbon wires. Russ. J. Nondestruct. Test. 10, 18–26 (2014). https://doi.org/10.1134/S1061830914100088

    Article  CAS  Google Scholar 

  23. Stashkov, A.N., Schapova, E.A., Nichipuruk, A.P., Korolev, A.V.: Magnetic incremental permeability as indicator of compression stress in low-carbon steel. NDT E Int. 118, 102398 (2021). https://doi.org/10.1016/j.ndteint.2020.102398

    Article  CAS  Google Scholar 

  24. Stashkov, A.N., Schapova, E.A., Afanasiev, S.V., Stashkova, L.A., Nichipuruk, A.P.: Estimation of residual stresses in plastically deformed eutectoid steel with different perlite morphology via magnetic parameters. J. Magn. Magn. Mater. 546, 168850 (2022). https://doi.org/10.1016/j.jmmm.2021.168850

    Article  CAS  Google Scholar 

  25. Stashkov, A.N., Nichipuruk, A.P., Schapova, E.A., et al.: Magnetic properties of cyclically tensile-deformed steel 09G2S manufactured by selective laser melting. Russ. J. Nondestruct. Test. 59, 54–61 (2023). https://doi.org/10.1134/S1061830923700201

    Article  CAS  Google Scholar 

  26. Nichipuruk, A.P., Stashkov, A.N., Kuleev, V.G., Schapova, E.A., Osipov, A.A.: A procedure and device for calibration-free determination of residual compression stresses in low-carbon steels deformed by tension. Russ. J. Nondestruct. Test. 11, 772–778 (2017). https://doi.org/10.1134/S1061830917110055

    Article  Google Scholar 

  27. Jones, N.J., Petculescu, G., Wun-Fogle, M., Restorff, J.B., Clark, A.E., Hathaway, K.B., Schlagel, D., Lograsso, T.A.: Rhombohedral magnetostriction in dilute iron (Co) alloys. J. Appl. Phys. 117, 17A913 (2015). https://doi.org/10.1063/1.4916541

    Article  CAS  Google Scholar 

  28. du Tremolet, E., de Lacheisserie, R., Monterroso, M.: Magnetostriction of iron. J. Magn. Magn. Mater. 31–34, 837–838 (1983). https://doi.org/10.1016/0304-8853(83)90704-7

    Article  Google Scholar 

  29. Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)

    Book  Google Scholar 

  30. Kuleev, V.G., Tsar’kova, T.P.: Effect of plastic deformations and heat treatment onthe behavior of the coercive force under load. Phys. Metals Metallogr. 104(5), 461–468 (2007). https://doi.org/10.1134/S0031918X0711004X

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Diagnostics” No. 122021000030-1).

Author information

Authors and Affiliations

Authors

Contributions

ANS: Investigations, Formal analysis, Writing—Review and Editing, Writing—Original Draft; EAS: Investigations, Formal analysis, Visualization; APN: Supervision, Writing—Review and Editing; AVS: Investigations, Writing—Review and Editing.

Corresponding author

Correspondence to A. N. Stashkov.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stashkov, A.N., Schapova, E.A., Nichipuruk, A.P. et al. Magnetic Incremental Permeability of Elastically Deformed Iron and Nickel. J Nondestruct Eval 43, 8 (2024). https://doi.org/10.1007/s10921-023-01023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01023-y

Keywords

Navigation