Skip to main content
Log in

Characterization of Ultrasonic Transducer Response Using Laser Doppler Interferometer in kHz-Range for Civil Engineering Applications

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In typical NDT applications, anomalies are localized using different time-domain representations such as B, and C-scans. For these applications, the relative change in amplitude for the different frequency components present in the measured signals is not critical. On the other hand, this information is key when the main objective of the NDT measurements is the early detection of damage in construction materials such as concrete, asphalt, wood, or FRPs. The main objective of this paper is not the characterization for typical NDT applications; but for NDT applications in civil infrastructure; where surface waves are used, and the actual transducer wearing surface deformations are required to enhance the detection of distributed damage using wave amplitude changes as function of frequency and travel distance. Laser technology is used to characterize the response ultrasonic transducers, to demonstrate how different sections of the transmitter wear surface introduce different frequencies to the medium. The transducer characterization procedure designed in this study focuses on answering the fundamental question of what an ultrasonic transducer sends into the media in terms of the actual displacements in nanometres as a function of frequency. Finally, the benefits of the transducer characterization are demonstrated in a laboratory experiment with concrete specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. ASTM International (2020) "E1316–20 standard terminology for nondestructive examinations." .

  2. Schmerr, L.W., Song, S.: Ultrasonic Nondestructive Evaluation Systems. Springer US, New York, NY (2007)

    Book  Google Scholar 

  3. Wiciak, P., Cascante, G., Polak, M.A.: "Frequency and geometry effects on ultrasonic pulse velocity measurements of concrete specimens. MJ 117(2), 205–216 (2020). https://doi.org/10.14359/51722399

    Article  Google Scholar 

  4. Stauffer, J.D., Woodward, C.B., White, K.R.: Nonlinear ultrasonic testing with resonant and pulse velocity parameters for early damage in concrete. MJ 102(2), 118–121 (2005). https://doi.org/10.14359/14305

    Article  Google Scholar 

  5. Bittner, J.A., Popovics, J.S.: Direct imaging of moisture effects during slow dynamic nonlinearity. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5063904

    Article  Google Scholar 

  6. Eiras, J.N., et al.: Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J Acoust Soc Am 135(2), EL82–EL87 (2014). https://doi.org/10.1121/1.4862882

    Article  Google Scholar 

  7. Eiras, J.N., et al.: Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials. Opt. Eng. (2016). https://doi.org/10.1117/1.OE.55.1.011004

    Article  Google Scholar 

  8. Eiras, J.N., et al.: Cement-based material characterization using nonlinear single-impact resonant acoustic spectroscopy (NSIRAS). In: Kund, T. (ed.) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham (2018)

    Google Scholar 

  9. Snieder, R.: The theory of coda wave interferometry. Pure Appl. Geophys. 163(2), 455–473 (2006). https://doi.org/10.1007/s00024-005-0026-6

    Article  Google Scholar 

  10. Dai, S., Wuttke, F., Santamarina, J.C.: Coda wave analysis to monitor processes in soils. J. Geotech. Geoenviron. Eng. 139(9), 1504–1511 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000872

    Article  Google Scholar 

  11. Planès, T., Larose, E.: A review of ultrasonic coda wave interferometry in concrete. Cem. Concr. Res. 53, 248–255 (2013). https://doi.org/10.1016/j.cemconres.2013.07.009

    Article  Google Scholar 

  12. Philippidis, T.P., Aggelis, D.G.: Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43(7), 584–595 (2005). https://doi.org/10.1016/j.ultras.2004.12.001

    Article  Google Scholar 

  13. Chaix, J., Garnier, V., Corneloup, G.: Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation. Ultrasonics 44(2), 200–210 (2006). https://doi.org/10.1016/j.ultras.2005.11.002

    Article  Google Scholar 

  14. Kirlangic, A.S., Cascante, G., Polak, M.A.: Condition assessment of cementitious materials using surface waves in ultrasonic frequency range. Geotechn. Test. J. 38(2), 139–149 (2015). https://doi.org/10.1520/GTJ20140011

    Article  Google Scholar 

  15. Kirlangic, A.S., Cascante, G., Polak, M.A.: Assessment of concrete beams with irregular defects using surface waves. ACI Mater. J. 113(1), 73 (2016). https://doi.org/10.1359/5168807

    Article  Google Scholar 

  16. Moss, B.C., Scruby, C.B.: Investigation of ultrasonic transducers using optical techniques. Ultrasonics 26, 179–188 (1988)

    Article  Google Scholar 

  17. Erikson, K.: Pulse-echo ultrasonic transducer characterization. T-Su 26(1), 1 (1979). https://doi.org/10.1109/T-SU.1979.31056

    Article  Google Scholar 

  18. Erikson, K.: Tone-burst testing of pulse-echo transducers. T-Su 26(1), 7–13 (1979). https://doi.org/10.1109/T-SU.1979.31058

    Article  Google Scholar 

  19. Papadakis, E.P.: Theoretical and experimental methods to evaluate ultrasonic transducers for inspection and diagnostic applications. T-Su 26(1), 14–27 (1979). https://doi.org/10.1109/T-SU.1979.31059

    Article  Google Scholar 

  20. Miller, E.B., Eitzen, D.G.: Ultrasonic transducer characterization at the NBS. T-Su 26(1), 28–36 (1979). https://doi.org/10.1109/T-SU.1979.31060

    Article  Google Scholar 

  21. Chivers, R.C.: Time-delay spectrometry for ultrasonic transducer characterization. J. Phys. E: Sci. Instrum. 19(10), 834–843 (1986). https://doi.org/10.1088/0022-3735/19/10/015

    Article  Google Scholar 

  22. ASTM International (2014) "E1065/E1065M-14 standard guide for evaluating characteristics of ultrasonic search units.".

  23. Wang, T., Cheung, F., Butera, M.: An automated digital beam profile system for ultrasonic transducer characterization. NDT and E Int. 25(4), 171–176 (1992). https://doi.org/10.1016/0963-8695(92)90157-C

    Article  Google Scholar 

  24. Obaidat, M.S., Abu-Saymeh, D.S.: Methodologies for characterizing ultrasonic transducers using neural network and pattern recognition techniques. Tie 39(6), 529–536 (1992). https://doi.org/10.1109/41.170972

    Article  Google Scholar 

  25. Obaidat, M.S., Khalid, H., Sadoun, B.: Ultrasonic transducer characterization by neural networks. Inf. Sci. 107(1), 195–215 (1998). https://doi.org/10.1016/S0020-0255(97)10048-2

    Article  Google Scholar 

  26. Schmerr, L.W., Lopez-Sanchez, A., Huang, R.: Complete ultrasonic transducer characterization and its use for models and measurements. Ultrasonics 44, e753–e757 (2006). https://doi.org/10.1016/j.ultras.2006.05.088

    Article  Google Scholar 

  27. Wolf, F., et al.: Finite element modeling of ultrasonic transducer by utilizing an inverse scheme for the determination of its material parameters. Ultsym (2008). https://doi.org/10.1109/ULTSYM.2008.0188

    Article  Google Scholar 

  28. Canney, M., et al.: Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. J. Acoust. Soc. Am. 124(4), 2406–2420 (2008). https://doi.org/10.1121/1.2967836

    Article  Google Scholar 

  29. Fei, C., et al.: Fabrication and characterization of high-sensitivity ultrasonic transducers with functionally graded design. Jsen 19(16), 6650–6654 (2019). https://doi.org/10.1109/JSEN.2019.2905625

    Article  Google Scholar 

  30. Tallavo, F., Cascante, G., Pandey, M.D.: Ultrasonic transducers characterisation for evaluation of stiff geomaterials. Geotechnique 61(6), 501–510 (2011). https://doi.org/10.1680/geot.9.P.087

    Article  Google Scholar 

  31. Kirlangic, A.S., Cascante, G., Polak, M.A.: Characterization of piezoelectric accelerometers beyond the nominal frequency range. Geotech. Test. J. 40(1), 37–46 (2017). https://doi.org/10.1520/GTJ20150091

    Article  Google Scholar 

  32. Mahbaz, S., Cascante, G., Dusseault, M.B.: Calibration of a piezoelectric transducer through laser measurements and numerical simulation. J. Environ. Eng. Geophys. 24(1), 39–48 (2019). https://doi.org/10.2113/JEEG24.1.39

    Article  Google Scholar 

  33. Feeney, A., et al.: Dynamic nonlinearity in piezoelectric flexural ultrasonic transducers. Jsen 19(15), 6056–6066 (2019). https://doi.org/10.1109/JSEN.2019.2911158

    Article  Google Scholar 

  34. Feeney, A., et al.: The influence of air pressure on the dynamics of flexural ultrasonic transducers. Sensors (Base, Switzerland) 19(21), 4710 (2019). https://doi.org/10.3390/s19214710

    Article  Google Scholar 

  35. Eriksson, T.J.R., Ramadas, S.N., Dixon, S.M.: Ultrasonics. Ultrasonics 65, 242–248 (2015)

    Article  Google Scholar 

  36. A. W. Leissa (1969) Vibration of plates. 160.

  37. Daubechies, I., Lu, J., Wu, H.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmonic Anal. 30(2), 243–261 (2011). https://doi.org/10.1016/j.acha.2010.08.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Thakur, G., et al.: The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. Signal Process. 93(5), 1079–1094 (2013). https://doi.org/10.1016/j.sigpro.2012.11.029

    Article  Google Scholar 

  39. ASTM International (2016) "C597–16 standard test method for pulse velocity through concrete."

Download references

Funding

This study was funded by the Natural Sciences and Engineering Council of Canada (NSERC) and OPG/UNENE through the NSERC-CRD program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PW. The first draft of the manuscript was written by PW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Piotr Wiciak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiciak, P., Polak, M.A. & Cascante, G. Characterization of Ultrasonic Transducer Response Using Laser Doppler Interferometer in kHz-Range for Civil Engineering Applications. J Nondestruct Eval 41, 52 (2022). https://doi.org/10.1007/s10921-022-00884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00884-z

Keywords

Navigation