A Study of Stress Dependent Magnetostriction on Steel Plate by Analysis of an Electromagnetically Generated S0 Lamb Wave

Abstract

A ferromagnetic material’s magnetostriction coefficient is generally difficult to measure but it does depend on stress, so that measurement of the magnetostriction coefficient can in principle be applied to evaluate stress. A magnetostriction-based electromagnetic acoustic transducer (EMAT) is used to generate the S0 Lamb wave in a 4 mm thick steel plate, and the peak-to-peak value of the EMAT detected S0 Lamb wave signals are used to evaluate the stress. A nonlinear, magnetostrictive finite element model is developed and employed to stimulate the generation of the S0 Lamb wave in 4 mm thick steel plate in the time domain. The results show that the peak-to-peak amplitude of the S0 Lamb wave is inversely proportional to the applied tensile stress, whereas, with increasing compressive stress, the peak-to-peak value of the S0 wave signal rises to a peak at approximately − 50 MPa, and then decreases as compressive stress increases. This non-monotonic behaviour with compressive stress is not conducive to the evaluation of compressive stress, but the method can be used to quantify tensile stress. Experiments are conducted on 4 mm thick Q235 steel plates, in which a local stress is artificially applied. The S0 Lamb wave are generated by a magnetostriction-based EMAT generator, and the results are in a good agreement with the simulation. This method is restricted to measurement of local stress underneath the generator. With suitable calibration, this method can be employed to evaluate local tensile stress in ferromagnetic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Takahashi, S., Motegi, R.: Stress dependency on ultrasonic wave propagation velocity. J. Mater. Sci. 22, 1857–1863 (1987)

    Article  Google Scholar 

  2. 2.

    Roberts, P.A., Cowan, B.R., Liu, Y., Lin, A.C., Nielsen, P.M., Taberner, A.J., Stewart, R.A., Lam, H.I., Young, A.A.: Real-time aortic pulse wave velocity measurement during exercise stress testing. J. Cardiovasc. Magn. Reson. 17, 86 (2015)

    Article  Google Scholar 

  3. 3.

    Washer, G.A., Green, R.E., Pondjr, R.B.: Velocity constants for ultrasonic stress measurement in prestressing tendons. Res. Nondestruct. Eval. 14, 81–94 (2002)

    Article  Google Scholar 

  4. 4.

    Murayama, R.: Non-contact stress measurement during tensile testing using an EMAT for SH-plate wave and Lamb wave. J. Sens. Technol. 1, 65–70 (2011)

    Article  Google Scholar 

  5. 5.

    Shi, F., Michaels, J.E., Lee, S.J.: In situ estimation of applied biaxial loads with Lamb waves. J. Acoust. Soc. Am. 133, 677–687 (2013)

    Article  Google Scholar 

  6. 6.

    Du, H., Turner, J.A.: Dependence of diffuse ultrasonic backscatter on residual stress in 1080 steel. Ultrasonics 67, 65 (2015)

    Article  Google Scholar 

  7. 7.

    Wang, P., Zhu, S., Tian, G.Y., Wang, H., Wilson, J., Wang, X.: Stress measurement using magnetic Barkhausen noise and metal magnetic memory testing. Meas. Sci. Technol. 21, 055703 (2010)

    Article  Google Scholar 

  8. 8.

    Stewart, D.M., Stevens, K.J., Kaiser, A.B.: Magnetic Barkhausen noise analysis of stress in steel. Curr. Appl. Phys. 4, 308–311 (2004)

    Article  Google Scholar 

  9. 9.

    Gauthier, J., Krause, T.W., Atherton, D.L.: Measurement of residual stress in steel using the magnetic Barkhausen noise technique. NDT&E Int. 31, 23–31 (1998)

    Article  Google Scholar 

  10. 10.

    Gelfi, M., Bontempi, E., Roberti, R., Depero, L.E.: X-ray diffraction Debye ring analysis for stress measurement (DRAST): a new method to evaluate residual stresses. Acta Mater. 52, 583–589 (2004)

    Article  Google Scholar 

  11. 11.

    Zhang, Y.L., Liu, J.Y., Wang, J., Zeng, Y.J.: X-ray diffraction characteristics of five materials for stress measurement. J. Strain Anal. Eng. Des. 45, 319–328 (2010)

    Article  Google Scholar 

  12. 12.

    Ruud, C.O., Chen, P.C.: Application of an advanced XRD instrument for surface stress-tensor measurements on steel sheets. Exp. Mech. 25, 245–250 (1985)

    Article  Google Scholar 

  13. 13.

    Ganguly, S., Stelmukh, V., Fitzpatrick, M.E., Edwards, L.: Use of neutron and synchrotron X-ray diffraction for non-destructive evaluation of weld residual stresses in aluminium alloys. J. Neutron Res. 12, 225–231 (2004)

    Article  Google Scholar 

  14. 14.

    Pratihar, S.: Residual stress measurement on different length scales using neutron and synchrotron X-ray diffraction. Science 95, 553–554 (2006)

    Google Scholar 

  15. 15.

    Wang, G., Wang, M.L., Zhao, Y.: Stress monitoring of multi-strand cable through the measurement of magnetic permeability. KSCE J. Civ. Eng. 7, 667–674 (2003)

    Google Scholar 

  16. 16.

    Vourna, P., Hristoforou, E., Ktena, A., Svec, P., Mangiorou, E.: Dependence of magnetic permeability on residual stresses in welded steels. IEEE Trans. Magn. 53, 1–4 (2017)

    Article  Google Scholar 

  17. 17.

    Makar, J.M., Tanner, B.K.: The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels. J. Magn. Magn. Mater. 222, 291–304 (2000)

    Article  Google Scholar 

  18. 18.

    Yamasaki, T., Yamamoto, S., Hirao, M.: Effect of applied stresses on magnetostriction of low carbon steel. NDT&E Int. 29, 263–268 (1996)

    Article  Google Scholar 

  19. 19.

    Tam, A.C., Schroeder, H.: Precise measurements of a magnetostriction coefficient of a thin soft-magnetic film deposited on a substrate. J. Appl. Phys. 64, 5422–5424 (1988)

    Article  Google Scholar 

  20. 20.

    Klokholm, E.: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Magn. 12, 819–821 (2003)

    Article  Google Scholar 

  21. 21.

    Ribichini, R., Cegla, F., Nagy, P.B., Cawley, P.: Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel materials. NDT&E Int. 45, 32–38 (2012)

    Article  Google Scholar 

  22. 22.

    Takaki, H., Tsuji, T.: The measurement of magnetostriction by means of strain gauge. J. Phys. Soc. Jpn. 11, 1153–1157 (1956)

    Article  Google Scholar 

  23. 23.

    Yugov, V.A., D’Yakov, G.P.: Film strain gauges for measuring magnetostriction in ferrites. Meas. Tech. 3, 857–858 (1960)

    Article  Google Scholar 

  24. 24.

    Liu, X., Wu, B., He, C.: A Novel Integrated Sensor for Stress Measurement in Steel Strand Based on Elastomagnetic and Magnetostrictive Effect, pp. 65–73. Springer, Cham (2015)

    Google Scholar 

  25. 25.

    Houck, J.R., Bohm, H.V., Maxfield, B.W., Wilkins, J.W.: Direct electromagnetic generation of acoustic waves. Phys. Rev. Lett. 19, 224–227 (1967)

    Article  Google Scholar 

  26. 26.

    Thompson, R.B.: Electromagnetic, noncontact transducers. In: Ultrasonics Symposium, Monterey, California, USA, 1973, pp. 385–392.

  27. 27.

    Thompson, R.B.: A model for the electromagnetic generation of ultrasonic guided waves in ferromagnetic metal polycrystals. IEEE Trans. Sonics Ultrason. 25, 7–15 (1978)

    Article  Google Scholar 

  28. 28.

    Buck, O., Thompson, R.B.: Acoustic interactions with internal stresses in metals. In: Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, July 1975–September 1976, vol 2, pp. 84–92

  29. 29.

    He, J., Dixon, S., Hill, S., Xu, K.: A new electromagnetic acoustic transducer design for generating and receiving S0 Lamb waves in ferromagnetic steel plate. Sensors 17, 1023 (2017)

    Article  Google Scholar 

  30. 30.

    Ren, W., Xu, K., Zhou, P.: Fast measurement of magnetostriction coefficients for silicon steel strips using magnetostriction-based EMAT. Sensors 18, 4495 (2018)

    Article  Google Scholar 

  31. 31.

    Jiles, D.: Introduction to Magnetism and Magnetic Materials, p. 3. Chapman and Hall, London (1998)

    Google Scholar 

  32. 32.

    Brown, W.F.: Domain theory of ferromagnetics under stress. Part II. Magnetostriction of polycrystalline material. Phys. Rev. 53, 482–491 (1938)

    Article  Google Scholar 

  33. 33.

    Lee, E.W.: Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18, 184 (1955)

    Article  Google Scholar 

  34. 34.

    Atherton, D.L., Szpunar, J.A.: Effect of stress on magnetization and magnetostriction in pipeline steel. IEEE Trans. Magn. 22, 514–516 (1986)

    Article  Google Scholar 

  35. 35.

    Ren, W., Xu, K., Dixon, S., Zhang, C.: A study of magnetostriction mechanism of EMAT on low-carbon steel at high temperature. NDT&E Int. 101, 34–43 (2019)

    Article  Google Scholar 

  36. 36.

    Ren, W., He, J., Dixon, S., Xu, K.: Enhancement of EMAT’s efficiency by using silicon steel laminations back-plate. Sens. Actuators A (2018). https://doi.org/10.1016/j.sna.2018.03.010

    Article  Google Scholar 

  37. 37.

    Rose, J.L.: Ultrasonic Waves in Solid Media, pp. 1807–1808. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  38. 38.

    Wang, L., Yuan, F.G.: Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments. Compos. Sci. Technol. 67, 1370–1384 (2007)

    Article  Google Scholar 

  39. 39.

    Jian, X., Dixon, S., Quirk, K., Grattan, K.T.V.: Electromagnetic acoustic transducers for in- and out-of plane ultrasonic wave detection. Sens. Actuators A 148, 51–56 (2008)

    Article  Google Scholar 

  40. 40.

    Dixon, S., Edwards, C., Palmer, S.: A study of acoustic birefringence in aluminium plate using broadband electromagnetic acoustic transducers (EMATs). In: Ultrasonics International, 1993, pp. 213–216

  41. 41.

    Kandil, F., Lord, J., Fry, A., Grant, P.: A Review of Residual Stress Measurement Methods. A Guide to Technique Selection. NPL, Report MATC (A) 2001, 4

  42. 42.

    Lee, S., Kim, J.M., Shin, Y.E.: The influences of residual stress on the frequency of ultrasonic transducers with composite membrane structure. J. Mech. Sci. Technol. 20, 76–84 (2006)

    Article  Google Scholar 

  43. 43.

    Stull, J.L.: Magnetostriction of magnetite. Thesis, State University of New York, 1954

  44. 44.

    Callen, H.B., Callen, E.R.: Theory of high-temperature magnetostriction. Phys. Rev. 132, 991–996 (1963)

    Article  Google Scholar 

  45. 45.

    Kang, L., Zhang, C., Dixon, S., Zhao, H., Hill, S., Liu, M.H.: Enhancement of ultrasonic signal using a new design of Rayleigh-wave electromagnetic acoustic transducer. NDT&E Int. 86, 36–43 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Key R&D Program of China (No. 2018YFB0704304).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, W.P., Xu, K. & Dixon, S. A Study of Stress Dependent Magnetostriction on Steel Plate by Analysis of an Electromagnetically Generated S0 Lamb Wave. J Nondestruct Eval 38, 102 (2019). https://doi.org/10.1007/s10921-019-0642-1

Download citation

Keywords

  • Stress measurement
  • Electromagnetic acoustic transducer
  • Magnetostrictive effect
  • Lamb wave
  • Steel plate