Skip to main content
Log in

A Multi-scale Fuzzy Measure Entropy and Infinite Feature Selection Based Approach for Rolling Bearing Fault Diagnosis

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Fuzzy measure entropy (FuzzyMEn) is a recently improved non-linear dynamic parameter for evaluating the signals’ complexity. In comparison with fuzzy entropy (FuzzyEn), which only emphasizes the local characteristics of the signal but neglects its global trend, FuzzyMEn can reflect not only the local but also the global characteristics of the signal. Therefore, by calculating the FuzzyMEn values in different scales, the multi-scale fuzzy measure entropy (MFME) method is put forward in this paper and used for extracting the fault features from vibration signals of rolling bearing. After the feature extraction, the newly developed infinite feature selection (Inf-FS) method is employed to choose the most representative features from the original ones of high dimension. Finally, a new rolling bearing fault diagnosis approach is presented based on MFME, Inf-FS and support vector machine (SVM). The experimental analysis indicates that the presented approach can realize the rolling bearing fault diagnosis effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tiwari, R., Gupta, V.K., Kankar, P.K.: Bearing fault diagnosis based on multi-scale permutation entropy and adaptive neuro fuzzy classifier. J. Vib. Control 21, 461–467 (2015)

    Article  Google Scholar 

  2. Kumar, A., Kumar, R.: Role of signal processing, modeling and decision making in the diagnosis of rolling element bearing defect: a review. J. Nondestr. Eval. 38(1), 5 (2019)

    Article  Google Scholar 

  3. Lei, Y.G., Lin, J., He, Z.J., Zi, Y.Y.: Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal. Process. 25, 1738–1749 (2011)

    Article  Google Scholar 

  4. Sharma, A., Amarnath, M., Kankar, P.K.: Novel ensemble techniques for classification of rolling element bearing faults. J. Braz. Soc. Mech. Sci. Eng. 39(3), 709–724 (2017)

    Article  Google Scholar 

  5. Dong, G., Chen, J., Zhao, F.: Incipient bearing fault feature extraction based on minimum entropy deconvolution and k-singular value decomposition. J. Manuf. Sci. Eng. 139(10), 101006 (2017)

    Article  Google Scholar 

  6. Vakharia, V., Gupta, V.K., Kankar, P.K.: Efficient fault diagnosis of ball bearing using ReliefF and Random Forest classifier. J. Braz. Soc. Mech. Sci. Eng. 39(8), 2969–2982 (2017)

    Article  Google Scholar 

  7. Feng, Z., Chen, X.: Adaptive iterative generalized demodulation for nonstationary complex signal analysis: principle and application in rotating machinery fault diagnosis. Mech. Syst. Signal. Process. 110, 1–27 (2018)

    Article  Google Scholar 

  8. Yang, Y., Yu, D.J., Cheng, J.S.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294, 269–277 (2006)

    Article  Google Scholar 

  9. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88(6), 2297–2301 (1991)

    Article  MathSciNet  Google Scholar 

  10. Yan, R., Gao, R.X.: Approximate entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal. Process. 21, 241–250 (2007)

    Google Scholar 

  11. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Article  Google Scholar 

  12. Chen, W.T., Wang, Z.Z., Xie, H.B., Yu, W.: Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15(2), 266–272 (2007)

    Article  Google Scholar 

  13. Chen, W.T., Zhuang, J., Yu, W.: Measuring complexity using FuzzyEn, ApEn and SampEn. Med. Eng. Phys. 31, 61–68 (2009)

    Article  Google Scholar 

  14. Zheng, J.D., Cheng, J.S., Yang, Y.: A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mech. Mach. Theory 70, 441–453 (2013)

    Article  Google Scholar 

  15. Zhu, K.H., Li, H.L.: A rolling element bearing fault diagnosis approach based on hierarchical fuzzy entropy and support vector machine. Proc. IMechE Part C J. Mech. Eng. Sci. 230(13), 2314–2322 (2016)

    Article  Google Scholar 

  16. Liu, C.Y., Li, K., Zhao, L.N., Liu, F., Zheng, D., Liu, C., Liu, S.: Analysis of heart variability using fuzzy measure entropy. Comput. Biol. Med. 43, 100–108 (2013)

    Article  Google Scholar 

  17. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of physiologic time series. Phys. Rev. Lett. 89, 062102 (2002)

    Article  Google Scholar 

  18. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)

    Article  MathSciNet  Google Scholar 

  19. Liu, H.H., Han, M.H.: A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 75, 67–78 (2014)

    Article  Google Scholar 

  20. Zhang, L., Xiong, G.L., Liu, H.S.: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 37, 6017–6085 (2010)

    Google Scholar 

  21. Zheng, J.D., Cheng, J.S., Yang, Y., Luo, S.: A rolling bearing fault diagnosis method based on multi-scale fuzzy entropy and variable predictive model-based class discrimination. Mech. Mach. Theory 78, 187–200 (2014)

    Article  Google Scholar 

  22. Li, Y.B., Xu, M.Q., Wang, R.X., Huang, W.: A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 360, 277–299 (2016)

    Article  Google Scholar 

  23. Cerrada, M., Sánchez, R.V., Pacheco, F., Cabrera, D., Zurita, G., Li, C.: Hierarchical feature selection based on relative dependency for gear fault diagnosis. Appl. Intell. 44(3), 687–703 (2016)

    Article  Google Scholar 

  24. Giorgio, R., Melzi, S., Cristani, M.: Infinite feature selection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4202–4210 (2015)

  25. Zhu, K.H., Song, X.G., Xue, D.X.: A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm. Measurement 47, 669–675 (2014)

    Article  Google Scholar 

  26. Rapur, J.S., Tiwari, R.: On-line time domain vibration and current signals based multi-fault diagnosis of centrifugal pumps using support vector machines. J. Nondestr. Eval. 38(1), 6 (2018)

    Article  Google Scholar 

  27. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  Google Scholar 

  28. Lou, X., Loparo, K.A.: Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal. Process. 18(5), 1077–1095 (2004)

    Article  Google Scholar 

  29. Widodo, A., Yang, B.S.: Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal. Process. 21(6), 2560–2574 (2007)

    Article  Google Scholar 

  30. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. Adv. Neural. Inf. Process. Syst. 18, 507–514 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keheng Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Chen, L. & Hu, X. A Multi-scale Fuzzy Measure Entropy and Infinite Feature Selection Based Approach for Rolling Bearing Fault Diagnosis. J Nondestruct Eval 38, 90 (2019). https://doi.org/10.1007/s10921-019-0623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0623-4

Keywords

Navigation