Skip to main content
Log in

Non-destructive Neutron Surface Residual Stress Analysis

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Diffraction is a powerful tool for investigation of residual as well as applied stresses in engineering materials and components. Both X-ray and neutron diffraction can be used for this purpose. The interest in neutron stress analysis stems from the high penetrating power of neutrons when compared to laboratory X-ray sources, i.e. several cm instead of a few tens of µm in metallic materials. This contribution gives an overview on current instrumental and methodical developments for non-destructive through surface strain measurements, which bridges the gap between X-rays and neutrons analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofmann, M., Schneider, R., Seidl, G.A., Rebelo Kornmeier, J., Wimpory, R., Garbe, U., Brokmeier, H.G.: The new materials science diffractometer STRESS-SPEC at FRM-II. Physica B 385–386, 1035–1037 (2006)

    Article  Google Scholar 

  2. Brokmeier, H.G., Gan, W.M., Randau, C., Völler, M., Rebelo Kornmeier, J., Hofmann, M.: Texture analysis at neutron diffractometer STRESS-SPEC. Nucl. Instrum. Methods Phys. Res. A 642, 87–92 (2011)

    Article  Google Scholar 

  3. Zinth, V., von Lüders, C., Hofmann, M., Hattendorff, J., Buchberger, I., Erhard, S., Rebelo Kornmeier, J., Jossen, A., Gilles, R.: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. J. Power Sources 271, 152–159 (2014)

    Article  Google Scholar 

  4. Cavaliere, P. (ed.): Chapter: 16. In: Cold-Spray Coatings. Recent Trends and Future Perspectives, 1st edn. Springer, Cham (2018)

    Google Scholar 

  5. Vladimir, L., Andrew, V., Valarezo, A., Sanjay, S.: Neutron through-thickness stress measurements in coatings with high spatial resolution. Mater. Sci. Forum 905, 165–173 (2017)

    Article  Google Scholar 

  6. Ramjaun, T.I., Stone, H.J., Karlsson, L., Gargouhri, M.A., Dalaei, K., Moat, R.J., Bhadeshia, H.K.D.H.: Surface residual stresses in multipass welds produced using low transformation temperature filler alloys. Sci. Technol. Weld. Join. 19(7), 623–630 (2014)

    Article  Google Scholar 

  7. Gibmeier, J., Back, H.C., Mutter, M., Vollert, F., Vaßen, R., Rebelo Kornmeier, J., Mücke, R., Vaßen, R.: Study of stability of microstructure and residual strain after thermal loading of plasma sprayed YSZ by through surface neutron scanning. Physica B 551, 69–78 (2018)

    Article  Google Scholar 

  8. Hutchings, M.T., Withers, P.J., Holden, T.M., Lorentzen, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. Taylor and Francis, London (2005)

    Book  Google Scholar 

  9. Webster, P.J., Mills, G., Wang, X.D., Kang, W.P., Holden, T.M.: Impediments to efficient through-surface strain scanning. J. Neutron Res. 3, 223–240 (1995)

    Article  Google Scholar 

  10. Rebelo Kornmeier, J., Gibmeier, J., Hofmann, M.: Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample. Meas. Sci. Technol. 22, 065705 (2011)

    Article  Google Scholar 

  11. Šaroun, J., Rebelo Kornmeier, J., Hofmann, M., Mikula, P., Vrana, M.: Analytical model for neutron diffraction peak shifts due to the surface effect. J. Appl. Crystallogr. 46, 628–638 (2013)

    Article  Google Scholar 

  12. Köhler, H., Rajput, R., Kahzan, P., Rebelo Kornmeier, J.: On the influence of laser cladding and post-processing strategies on residual stresses in steel specimens. Phys. Procedia 56, 250–261 (2014)

    Article  Google Scholar 

  13. Coppola, R., Crescenzi, F., Gan, W., Hofmann, M., Lie, M., Visca, E., You, J.-H.: Neutron diffraction measurement of residual stresses in an ITER-like tungsten-monoblock type plasma-facing component. Fusion Eng. Des. (2019). https://doi.org/10.1016/j.fusengdes.2019.01.059

    Article  Google Scholar 

  14. Šaroun, J., Rebelo Kornmeier, J., Gibmeier, J., Hofmann, M.: Treatment of spatial resolution effects in neutron residual strain scanning. Physica B (2018). https://doi.org/10.1016/j.physb.2018.01.013

    Article  Google Scholar 

  15. Pirling, T.: Neutron strain scanning at interfaces: an optimised beam optics to reduce the surface effect. Mater. Sci. Forum 347–349, 107–112 (2000)

    Article  Google Scholar 

  16. Šaroun, J., Kulda, J.: Raytrace of neutron optical systems with RESTRAX. In: Modern Developments in X-Ray and Neutron Optics. Springer Series in Optical Sciences, vol. 137, pp. 57–68. Springer, Berlin (2008)

  17. Defendi, I., Egerland, S., Kastenmüller, A., Mühlbauer, M., Panradl, M., Schöffel, T., Zeitelhack, K.: FRM II Annual Report (2005)

  18. Eigenmann, B., Macherauch, E.: Rontgenographische Untersuchung von Spannungszustanden in Werkstoffen. Mater.-wiss. Werkst. 27, 426–437 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by the German Research Foundation (DFG) within the Project HO 3322/2-1, HO3322/2-2 and Czech Science Foundation Project No. 16-08803J, and by the German Research Foundation (DFG) within the Project HO 3322/4-1 and GI 376/11-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rebelo Kornmeier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebelo Kornmeier, J., Hofmann, M., Gan, W.M. et al. Non-destructive Neutron Surface Residual Stress Analysis. J Nondestruct Eval 38, 79 (2019). https://doi.org/10.1007/s10921-019-0617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0617-2

Keywords

Navigation