Skip to main content

Influence of Local Mechanical Parameters on Ultrasonic Wave Propagation in Large Forged Steel Ingots

Abstract

In numerous applications, high strength forged steel requires uncompromising quality and mechanical properties to provide advanced performances. Ultrasonic testing are commonly used for material characterization to measure mechanical properties and for nondestructive testing to detect flaws or other features contained in metallic objects. In steel blocks of relatively small dimensions (at least two dimensions not exceeding a few centimeters), temperature and homogeneity are well controlled during the solidification. However, these parameters may become difficult to control during manufacturing of large objects. Forging and heat treatments are known to modify the microstructure and/or the grain size, therefore affecting elastic properties, and consequently, the ultrasonic inspection reliability. In this context, the relationship between ultrasonic group and phase velocity variations with local properties of a forged and heat-treated \(40{,}000~\mathrm {kg}\) bainitic steel block manufactured in an industrial setting was investigated. The block was cut into a \(20~\mathrm {mm}\) thick slice that was then divided into 875 parallelepiped samples. A subset was selected for ultrasonic measurements, metallurgical study, and chemical analysis. Ultrasonic phase velocity showed a strong correlation with grain size, whereas group velocity was shown to vary as a function of the Young’s modulus and the chemical composition. Tensile testing was performed to validate the Young’s modulus calculated from the ultrasonic group velocities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Krautkramer, J., Krautkramer, H.: Ultrasonic Testing of Materials, pp. 533–534. Springer, Berlin (2013)

    Google Scholar 

  2. Chassignole, B., El Guerjouma, R., Ploix, M.A., Fouquet, T.: Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: towards a higher reliability in ultrasonic non-destructive testing. NDT & E Int. 43(4), 273–282 (2010)

    Article  Google Scholar 

  3. Sinczak, J., Majta, J., Glowacki, M., Pietrzyk, M.: Prediction of mechanical properties of heavy forgings. J. Mater. Process. Technol. 80, 166–173 (1998)

    Article  Google Scholar 

  4. Ghassemali, E., Tan, M.-J., Wah, C.B., Jarfors, A.E.W., Lim, S.C.V.: Grain size and workpiece dimension effects on material flow in an open-die micro-forging/extrusion process. Mater. Sci. Eng. A 582, 379–388 (2013)

    Article  Google Scholar 

  5. Price, J.W.H., Alexander, J.M.: Specimen geometries predicted by computer model of high deformation forging. Int. J. Mech. Sci. 21(7), 417–430 (1979)

    Article  Google Scholar 

  6. Park, J.J., Kobayashi, S.: Three-dimensional finite element analysis of block compression. Int. J. Mech. Sci. 26(3), 165–176 (1984)

    Article  Google Scholar 

  7. Cho, J.R., Jeong, H.S., Cha, D.J., Bae, W.B., Lee, J.W.: Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM. J. Mater. Process. Technol. 160(1), 1–8 (2005)

    Article  Google Scholar 

  8. Wu, M., Li, J., Kharicha, A., Ludwig, A.: Using a three-phase mixed columnar-equiaxed solidification model to study macrosegregation in ingot castings: perspectives and limitations. In: Liquid Metal Processing & Casting, p. 171, Springer, Cham (2013)

  9. Li, J., Wu, M., Ludwig, A., Kharicha, A.: Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model. Int. J. Heat Mass Transf. 72, 668–679 (2014)

    Article  Google Scholar 

  10. Tanzer, R., Schutzenhofer, W., Reiter, G., Fauland, H.-P., Konozsy, L., Ishmurzin, A., Wu, M., Ludwig, A.: Validation of a multiphase model for the macrosegregation and primary structure of high-grade steel ingots. Metall. Mater. Trans. B 40(3), 305–311 (2009)

    Article  Google Scholar 

  11. Gu, J.P., Beckermann, C.: Simulation of convection and macrosegregation in a large steel ingot. Metall. Mater. Trans. A 30(5), 1357–1366 (1999)

    Article  Google Scholar 

  12. Ali, M.G.S., Elsayed, N.Z., Eid, A.M.: Ultrasonic attenuation and velocity in steel standard reference blocks. Rom. J. Acoust. 1, 33–38 (2013)

    Google Scholar 

  13. Ricci, M., Senni, L., Burrascano, P., Borgna, R., Neri, S., Calderini, M.: Pulse-compression ultrasonic technique for the inspection of forged steel with high attenuation. Insight Non-Destruct. Test. Cond. Monit. 54(2), 91–95 (2012)

    Article  Google Scholar 

  14. Demirli, R., Saniie, J.: Model-based estimation of ultrasonic echoes. Part II: nondestructive evaluation applications. IEEE Trans. Ultrason. 48(3), 803–811 (2001)

    Article  Google Scholar 

  15. Fidahoussen, A.: Developpement d’une methode de reconstruction ultrasonore pour la localisation et la caracterisation de defauts. PhD thesis, Universite Paris Sud-Paris XI (2012)

  16. Moore, P.O.: Nondestructive Testing Handbook, Ultrasonic Testing, vol. 7, pp. 319–321. American Society for Nondestructive Testing Inc., Columbus (2007)

    Google Scholar 

  17. Jeong, H, Lee, J.-S., Lee, C.-H.: Time reversal beam focusing of ultrasonic array transducer on a defect in a two layer medium. In: AIP Conference Proceedings, vol. 1211, pp. 948–953. AIP Publishing (2010)

  18. Mordant, N., Prada, C., Fink, M.: Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method. J. Acoust. Soc. Am. 105(5), 2634–2642 (1999)

    Article  Google Scholar 

  19. Connolly, G .D., Lowe, M .J .S., Temple, J a G, Rokhlin, S .I.: Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model. J. Acoust. Soc. Am. 127(5), 2802–2812 (2010)

    Article  Google Scholar 

  20. Prasad, R., Kumar, S.: Study of the influence of deformation and thermal treatment on the ultrasonic behaviour of steel. J. Mater. Process. Technol. 42(1), 171 (1994)

    Article  Google Scholar 

  21. Jeong, H., Hsu, D.K.: Quantitative estimation of material properties of porous ceramics by means of composite micromechanics and ultrasonic velocity. NDT & E Int. 29(2), 95–101 (1996)

    Article  Google Scholar 

  22. Latiff, R.H., Fiore, N.F.: Ultrasonic attenuation and velocity in two-phase microstructures. J. Nucl. Mater. 57(6), 1441–1447 (1975)

    Google Scholar 

  23. Nam, Y.H., Kim, Y.-I., Nahm, S.H.: Evaluation of fracture appearance transition temperature to forged 3cr 1mo 0.25v steel using ultrasonic characteristics. Mater. Lett. 60(29–30), 3577–3581 (2006)

    Article  Google Scholar 

  24. Barry Wiskel, J., Kennedy, J., Ivey, D.G., Henein, H.: Ultrasonic velocity and attenuation measurements in l80 steel and their correlation with tensile properties. In: 19th World Conference on Non-destructive Testing (2016)

  25. Palanichamy, P., Joseph, A., Jayakumar, T., Raj, B.: Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT & E Int. 28(3), 179–185 (1995)

    Article  Google Scholar 

  26. Thompson, R.B., Gray, T.A.: A model relating ultrasonic scattering measurements through liquid solid interfaces to unbounded medium scattering amplitudes. J. Acoust. Soc. Am. 74(4), 1279–1290 (1983)

    Article  Google Scholar 

  27. Bedetti, T., Dorval, V., Jenson, F., Derode, A.: Characterization and modeling of ultrasonic structural noise in the multiple scattering regime. In: AIP Conference Proceedings, pp. 1158–1165 (2013)

  28. Haïat, G., Lhémery, A., Renaud, F., Padilla, F., Laugier, P., Naili, S.: Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption. J. Acoust. Soc. Am. 124(6), 4047–4058 (2008)

    Article  Google Scholar 

  29. Jenson, F., Padilla, F., Laugier, P.: Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med. Biol. 29, 455–464 (2003)

    Article  Google Scholar 

  30. Chentouf, S.M., Jahazi, M., Lapierre-Boire, L.-P., Godin, S.: Characteristics of austenite transformation during post forge cooling of large-size high strength steel ingots. Metallogr. Microstruct. Anal. 3(4), 281–297 (2014)

    Article  Google Scholar 

  31. Recker, D., Franzke, M., Hirt, G., Rech, R., Steingieber, K.: Grain size prediction during open die forging processes. Metall. Ital. 102(9), 29–35 (2010)

    Google Scholar 

  32. Loucif, A., Ben Fredj, E., Jahazi, M., Lapierre-Boire, L.-P., Tremblay, R., Beauvais, R.: Analysis of macrosegregation in large size forged ingot of high strength steel. In: The 6th International Congress on the Science and Technology of Steelmaking (ICS2015). Beijing (China) (2015)

  33. Miettinen, J.: Calculation of solidification-related thermophysical properties for steels. Metall. Mater. Trans. B 28(2), 281–297 (1997)

    Article  Google Scholar 

  34. Drain, L.E.: The Laser Doppler Technique. Wiley, New York (1980)

    Google Scholar 

  35. Laux, D., Cros, B., Despaux, G., Baron, D.: Ultrasonic study of UO2: effects of porosity and grain size on ultrasonic attenuation and velocities. J. Nucl. Mater. 300(2), 192–197 (2002)

    Article  Google Scholar 

  36. Dubois, M., Militzer, M., Moreau, A., Bussiére, J.F.: A new technique for the quantitative real-time monitoring of austenite grain growth in steel. Scr. Mater. 42(9), 867–874 (2000)

    Article  Google Scholar 

  37. Khan, S.Z., Khan, T.M., Joya, Y.F., Khan, M.A., Ahmed, S., Shah, A.: Assessment of material properties of AISI 316l stainless steel using non-destructive testing. Nondestruct. Test. Eval. 31(4), 360–370 (2016)

    Article  Google Scholar 

  38. Kruger, S.E., Moreau, A., Bescond, C., Monchalin, J.-P.: Real-time sensing of metallurgical transformations by laser-ultrasound. In: 16th World Conference on Nondestructive Testing, Montreal, Canada, August 30 September 3, 2004: WCNDT: book of abstracts

  39. Ratassepp, M., Rao, J., Fan, Z.: Quantitative imaging of Young’s modulus in plates using guided wave tomography. NDT & E Int. 94, 22–30 (2018)

    Article  Google Scholar 

  40. Falardeau, T., Belanger, P.: Ultrasound tomography in bone mimicking phantoms: simulations and experiments. J. Acoust. Soc. Am. 144(5), 2937–2946 (2018)

    Article  Google Scholar 

  41. Dupont-Marillia, F., Jahazi, M., Lafreniere, S., Belanger, P.: Design and optimisation of a phased array transducer for ultrasonic inspection of large forged steel ingots. NDT & E Int. 103, 119–129 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC Engage Grant EGP 470154-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Dupont-Marillia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dupont-Marillia, F., Jahazi, M., Lafreniere, S. et al. Influence of Local Mechanical Parameters on Ultrasonic Wave Propagation in Large Forged Steel Ingots. J Nondestruct Eval 38, 73 (2019). https://doi.org/10.1007/s10921-019-0611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0611-8

Keywords

  • First ultrasonic testing
  • Group velocity
  • Phase velocity
  • Large dimensions
  • Forged steel