Characterization of Liquids Using Electrical Properties in Microwave and Millimeter Wave Frequency Bands


This paper describes effects of electrical properties of materials to recognize the liquids with high accuracy. The goal of this study is to quickly characterize a liquid by making accurate predictions. By interpreting the relationships between the specified properties, the forecasts have been tried to be executed about other important parameters of any liquid. However, although the effects of the important parameters are paid attention, the temperature effect is not considered, in this study. Considering the high importance of safety and security applications, the liquids analyzed in this study were chosen to be transported by one person on various trips. Two different microwave spectroscopy systems (reflectivity free space and coaxial probe measurement methods), are used to collect the electrical properties of liquids by vector network analyzer. Furthermore, these specially selected liquids are first measured in a wide frequency range and the values of their complex permittivity are given.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 19 March 2020

    Unfortunately, the author had missed to include the below acknowledgement text in the original publication of the article.


  1. 1.

    Al-Mously, S.I.Y.: A modified complex permittivity measurement technique at microwave frequency. Int. J. New Comput. Archit. Appl. 2, 389–401 (2012)

    Google Scholar 

  2. 2.

    Buyukozturk, O., Yu, T.Y., Ortega, J.A.: A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. Cem. Concr. Compos. 28, 349–359 (2006).

    Article  Google Scholar 

  3. 3.

    Haddadi, K., Wang, M.M., Benzaim, O., Glay, D., Lasri, T.: Contactless microwave technique based on a spread-loss model for dielectric materials characterization. IEEE Microw. Wirel. Compon. Lett. 19, 33–35 (2009).

    Article  Google Scholar 

  4. 4.

    Jilani, M.T., Zaka, M., Khan, A.M., Khan, M.T., Ali, S.M.: A brief review of measuring techniques for characterization of dielectric materials. Int. J. Inf. Technol. Electr. Eng. 1, 1–5 (2012)

    Google Scholar 

  5. 5.

    Tereshchenko, O.V., Buesink, F.J.K., Leferink, F.B.J.: An overview of the techniques for measuring the dielectric properties of materials. In: XXXth URSI General Assembly and Scientific Symposium. pp. 1–4. IEEE (2011)

  6. 6.

    Tosaka, T., Fujii, K., Fukunaga, K., Kasamatsu, A.: Development of complex relative permittivity measurement system based on free-space in 220-330-GHz range. IEEE Trans. Terahertz Sci. Technol. 5, 1–8 (2014).

    Article  Google Scholar 

  7. 7.

    Górny, M., Rzoska, S.J.: Experimental solutions for nonlinear dielectric studies in complex liquids. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 45–53. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  8. 8.

    Kraut, H., Eiblmaier, J., Grethe, G., Löw, P., Matuszczyk, H., Saller, H.: Algorithm for reaction classification. J. Chem. Inf. Model. 53, 2884–2895 (2013).

    Article  Google Scholar 

  9. 9.

    Orzechowski, K., Kosmowska, M.: Dielectric properties of critical conducting mixtures. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 89–100. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  10. 10.

    Urban, S., Wűrflinger, A.: Influence of pressure on the dielectric properties of liquid crystals. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 211–220. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  11. 11.

    Liu, L.: Application of microwave for remote NDT and distinction of biofouling and wall thinning defects ınside a metal pipe. J. Nondestruct. Eval. 34, 40 (2015).

    Article  Google Scholar 

  12. 12.

    Eremenko, Z.E., Skresanov, V.N., Shubnyi, A.I., Anikina, N.S., Gerzhikova, V.G., Zhilyakov, T.A.: Complex permittivity measurement of high loss liquids and its application to wine analysis. In: Zhurbenko, V. (ed.) Electromagnetic Waves, 1st edn., pp. 403–422. InTech, Rijeka (2011)

    Google Scholar 

  13. 13.

    Jiang, Y., Ju, Y., Yang, L.: Nondestructive ın-situ permittivity measurement of liquid within a bottle using an open-ended microwave waveguide. J. Nondestruct. Eval. 35, 7 (2016).

    Article  Google Scholar 

  14. 14.

    Li, Z., Haigh, A., Soutis, C., Gibson, A., Sloan, R.: A simulation-assisted non-destructive approach for permittivity measurement using an open-ended microwave waveguide. J. Nondestruct. Eval. 37, 39 (2018).

    Article  Google Scholar 

  15. 15.

    Pappas, R.A., Bamberger, J.A., Bond, L.J., Greenwood, M.S., Panetta, P.D., Pfund, D.M.: Ultrasonic methods for characterization of liquids and slurries. In: 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), pp. 563–566. IEEE (2001)

  16. 16.

    Cherpak, N.T., Barannik, A.A., Prokopenko, Y.V., Smirnova, T.A., Filipov, Y.F.: A new technique of dielectric characterization of liquids. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 63–76. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  17. 17.

    Jiang, X., Yang, T., Li, C., Zhang, R., Zhang, L., Zhao, X., Zhu, H.: Rapid liquid recognition and quality ınspection with graphene test papers. Glob. Chall. 1, 1700037 (2017).

    Article  Google Scholar 

  18. 18.

    Ozturk, T.: Classification of measured unsafe liquids using microwave spectroscopy system by multivariate data analysis techniques. J. Hazard. Mater. 363, 309–315 (2019).

    Article  Google Scholar 

  19. 19.

    Kim, S., Kwak, J., Ko, B.: Automatic classification algorithm for raw materials using mean shift clustering and stepwise region merging in color. J. Broadcast. Eng. 21, 425–435 (2016).

    Article  Google Scholar 

  20. 20.

    Ozturk, T., Elhawil, A., Uluer, İ., Guneser, M.T.: Development of extraction techniques for dielectric constant from free-space measured S-parameters between 50 and 170 GHz. J. Mater. Sci.: Mater. Electron. 28, 11543–11549 (2017).

    Article  Google Scholar 

  21. 21.

    Ozturk, T., Hudlička, M., Uluer, İ.: Development of measurement and extraction technique of complex permittivity using transmission parameter S21 for millimeter wave frequencies. J. Infrared Millim. Terahertz Waves 38, 1510–1520 (2017).

    Article  Google Scholar 

  22. 22.

    Petersson, L.E.R., Smith, G.S.: An estimate of the error caused by the plane-wave approximation in free-space dielectric measurement systems. IEEE Trans. Antennas Propag. 50, 878–887 (2002).

    Article  Google Scholar 

  23. 23.

    Mitani, T., Hasegawa, N., Nakajima, R., Shinohara, N., Nozaki, Y., Chikata, T., Watanabe, T.: Development of a wideband microwave reactor with a coaxial cable structure. Chem. Eng. J. 299, 209–216 (2016).

    Article  Google Scholar 

  24. 24.

    Santos, J.C.A., Dias, M.H.C., Aguiar, A.P., Borges Jr., I., Borges, L.E.P.: Using the coaxial probe method for permittivity measurements of liquids at high temperatures. J. Microw. Optoelectron. Electromagn. Appl. 8, 78–91 (2009)

    Google Scholar 

  25. 25.

    Zajíček, R., Oppl, L., Vrba, J.: Broadband measurement of complex permitivity using reflection method and coaxial probes. Radioengineering 17, 14–19 (2008)

    Google Scholar 

  26. 26.

    Lange, N.A., Dean, J.A.: Lange’s handbook of chemistry. J. Pharm. Sci. 68, 805–806 (1979).

    Article  Google Scholar 

  27. 27.

    Grünewald, H.: CRC handbook of chemistry and physics. Angew. Chemie. 78, 912 (1966).

    Article  Google Scholar 

  28. 28.

    Lucic, B., Basic, I., Nadramija, D., Milicevic, A., Trinajstic, N., Suzuki, T., Petrukhin, R., Karelson, M., Katritzky, A.R.: Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods. Arkivoc 2002, 45 (2002).

    Article  Google Scholar 

  29. 29.

    Yao, M., Endo, H.: Structure and physical properties of liquid chalcogens. J. Non. Cryst. Solids. 205–207, 85–88 (1996).

    Article  Google Scholar 

  30. 30.

    Pohanish, R.P.: Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. Elsevier, Amsterdam (2012)

    Google Scholar 

  31. 31.

    Zhang, H.: Electrical properties of food. Food Eng. 1, 1–5 (2009)

    Article  Google Scholar 

  32. 32.

    Kumar, D., Singh, A., Tarsikka, P.S.: Interrelationship between viscosity and electrical properties for edible oils. J. Food Sci. Technol. 50, 549–554 (2013).

    Article  Google Scholar 

  33. 33.

    Zhang, G.-H., Yan, B.-J., Chou, K.-C., Li, F.-S.: Relation between viscosity and electrical conductivity of silicate melts. Metall. Mater. Trans. B 42B, 261–264 (2011).

    Article  Google Scholar 

  34. 34.

    Zhang, G.-H., Chou, K.-C.: Correlation between viscosity and electrical conductivity of aluminosilicate melts. Metall. Mater. Trans. B 43B, 849–855 (2012).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Turgut Ozturk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozturk, T. Characterization of Liquids Using Electrical Properties in Microwave and Millimeter Wave Frequency Bands. J Nondestruct Eval 38, 11 (2019).

Download citation


  • Characterization of liquids
  • Permittivity
  • Conductivity
  • Coaxial probe
  • Non-destructive measurement