Skip to main content

Pulsed Eddy Current Data Analysis for the Characterization of the Second-Layer Discontinuities

Abstract

Pulsed eddy current (PEC) technique has been applied as a viable method to detect hidden discontinuities in metallic structures. Conventionally, selected time-domain features are employed to characterize the PEC data, such as peak value, lift-off point of intersection, rising point, crossing time, and differential time to peak. The research presented in this paper continues the effort in a previous study on detecting the radial cracks starting from the fastener hole in second layer of a two-layer mock-up aircraft structure. A large diameter excitation coil with ferrite core is used to induce a strong pulse, and the magnetic field generated by eddy current is detected by Hall sensors. Instead of analyzing the limited time-domain features, we propose using machine learning methods to interpret the raw data without feature extraction. Thus, the second-layer discontinuities can be characterized presumably with all the information contained in a waveform. An automated detection framework is proposed in this paper and the experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sophian, A., Tian, G.Y., Taylor, D., Rudlin, J.: Electromagnetic and eddy current NDT: a review. INSIGHT 43(5), 302–306 (2001)

    Google Scholar 

  2. Sophian, A., Tian, G., Fan, M.: Pulsed eddy current non-destructive testing and evaluation: a review. Chin. J. Mech. Eng. 30(3), 500–514 (2017)

    Article  Google Scholar 

  3. Kriezis, E., Tsiboukis, T., Panas, S.M., Tegopoulos, J.: Eddy currents: theory and applications. Proc. IEEE 80(10), 1559–1589 (1992)

    Article  Google Scholar 

  4. Tian, G.Y., Zhao, Z.X., Baines, R.W.: The research of inhomogeneity in eddy current sensors. Sens. Actuators A Physi. 69(2), 148–151 (1998)

    Article  Google Scholar 

  5. Park, D.-G., Sekar Angani, C., Rao, B.P.C., Vértesy, G., Lee, D.-H., Kim, K.-H.: Detection of the subsurface cracks in a stainless steel plate using pulsed eddy current. J. Nondestruct. Eval. 32(4), 350–353 (2013)

    Article  Google Scholar 

  6. Angani, C.S., Park, D.G., Kim, C.G., Leela, P., Kollu, P., Cheong, Y.M.: The pulsed eddy current differential probe to detect a thickness variation in an insulated stainless steel. J. Nondestruct. Eval. 29(4), 248–252 (2010)

    Article  Google Scholar 

  7. Ghoni, R., Dollah, M., Sulaiman, A., Mamat Ibrahim., F.: Defect characterization based on eddy current technique: technical review. Adv. Mech. Eng. 6, 182496 (2014)

    Article  Google Scholar 

  8. Chen, T., Tian, G.Y., Sophian, A., Que, P.W.: Feature extraction and selection for defect classification of pulsed eddy current NDT. NDT & E Int. 41(6), 467–476 (2008)

    Article  Google Scholar 

  9. Safizadeh, M.S., Forsyth, D.S., Liu, Z., Lepine, B.A., Liao, M.: Pulsed eddy current inspections of aircraft structures in support of holistic damage tolerance. In: Proceedings of the Aerospace Manufacturing Technology Conference & Exposition. SAE International (2003)

  10. Xu, Z., Wu, X., Li, J., Kang, Y.: Assessment of wall thinning in insulated ferromagnetic pipes using the time-to-peak of differential pulsed eddy-current testing signals. NDT & E Int. 51, 24–29 (2012)

    Article  Google Scholar 

  11. He, Y., Luo, F., Pan, M., Weng, F., Xiangchao, H., Gao, J., Liu, Bo: Pulsed eddy current technique for defect detection in aircraft riveted structures. NDT & E Int. 43(2), 176–181 (2010)

    Article  Google Scholar 

  12. Li, Y., Chen, Z., Qi, Y.: Generalized analytical expressions of liftoff intersection in pec and a liftoff-intersection-based fast inverse model. IEEE Trans. Magn. 47(10), 2931–2934 (2011)

    Article  Google Scholar 

  13. Tian, G.Y., Li, Y., Mandache, C.: Study of lift-off invariance for pulsed eddy-current signals. IEEE Trans. Magn. 45(1), 184–191 (2009)

    Article  Google Scholar 

  14. Tian, G.Y., Sophian, A.: Defect classification using a new feature for pulsed eddy current sensors. NDT & E Int. 38(1), 77–82 (2005)

    Article  Google Scholar 

  15. He, Y., Luo, F., Pan, M., Xiangchao, H., Gao, J., Liu, B.: Defect classification based on rectangular pulsed eddy current sensor in different directions. Sens. Actuators A Phys. 157(1), 26–31 (2010)

    Article  Google Scholar 

  16. Stott, C.A., Underhill, P.R., Babbar, V.K.: Pulsed eddy current detection of cracks in multilayer aluminum lap joints. IEEE Sens. J. 15(2), 956–962 (2015)

    Article  Google Scholar 

  17. Butt, D.M., Underhill, P.R., Krause, T.W.: Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods. CINDE J. 37(5), 6–10 (2016)

    Google Scholar 

  18. Butt, D., Underhill, R., Krause,T.W.: Pulsed eddy current detection of second layer cracks at ferrous fasteners in aircraft lap-joint structures. In: Proceedings of the 19th World Conference on Non-Destructive Testing, pp. 1–8, Munich, Germany (2016)

  19. Pan, M., He, Y., Tian, G., Chen, D., Luo, F.: PEC frequency band selection for locating defects in two-layer aircraft structures with air gap variations. IEEE Trans. Instrum. Meas. 62(10), 2849–2856 (2013)

    Article  Google Scholar 

  20. Safizadeh, M.S., Lepine, B.A., Forsyth, D.S., Fahr, A.: Time–frequency analysis of pulsed eddy current signals. J. Nondestruct. Eval. 20(2), 73–86 (2001)

    Article  Google Scholar 

  21. Hosseini, S.M.S.: Detection of hidden corrosion by pulsed eddy current using time frequency analysis. Ph.D. Thesis, Universite de Montreal, Montreal, Quebec, Canada (2012)

  22. He, Y., Pan, M., Luo, F., Chen, D., Xiangchao, H.: Support vector machine and optimised feature extraction in integrated eddy current instrument. Measurement 46(1), 764–774 (2013)

    Article  Google Scholar 

  23. Liu, Z., Forsyth, D.S., Lepine, B.A., Hammad, I., Farahbakhsh, B.: Investigations on classifying pulsed eddy current signals with a neural network. INSIGHT 45(9), 608–614 (2003)

    Article  Google Scholar 

  24. Mandache, C., Whalen, P.: A gradual approach for the detection of second layer cracks using the pulsed eddy current technique. In: Proceedings of the Aircraft Airworthiness&Sustainment Conference (2012)

  25. Zheng, B., Yoon, S.W., Lam, S.S.: Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms. Expert Syst. Appl. 41(4), 1476–1482 (2014)

    Article  Google Scholar 

  26. Tehrany, M.S., Pradhan, B., Jebur, M.N.: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. (Amsterdam) 512, 332–343 (2014)

    Article  Google Scholar 

  27. John, V., Mita, S., Liu, Z., Qi, B.: Pedestrian detection in thermal images using adaptive fuzzy c-means clustering and convolutional neural networks. In: Proceedings of the 2015 14th IAPR International Conference on Machine Vision Applications (MVA), pp. 246–249. IEEE (2015)

  28. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  29. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    MATH  Google Scholar 

  30. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  31. Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

  32. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  33. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. ICML 96, 148–156 (1996)

    Google Scholar 

  34. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  35. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  36. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  37. Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest? In: Proceedings of the MLDM, pp. 154–168. Springer (2012)

Download references

Acknowledgements

Mr. Marc Genest at National Research Council of Canada is acknowledged for his valuable comments and feedback, which help improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, S., Liu, H. et al. Pulsed Eddy Current Data Analysis for the Characterization of the Second-Layer Discontinuities. J Nondestruct Eval 38, 7 (2019). https://doi.org/10.1007/s10921-018-0545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0545-6

Keywords

  • Pulse eddy current
  • Lift-off intersection
  • Second-layer crack
  • Machine learning
  • Classification