Advertisement

Laser Multi-mode Scanning Thermography Method for Fast Inspection of Micro-cracks in TBCs Surface

  • Dacheng Jiao
  • Wenxiong Shi
  • Zhanwei Liu
  • Huimin Xie
Article

Abstract

Conventional non-destructive testing methods are difficult to be applied in defect detection of thermal barrier coating (TBCs) because of some of its characteristics, such as porosity and thin thickness, etc. For detecting surface cracks in TBCs, a laser multi-modes scanning thermography (SMLT) method has been developed in this paper, combining fast scan mode using linear laser with fine scan mode using point laser on the tested specimen surface. Linear scanning has a large detection range and detection speed, and point scanning has a higher sensitivity. Through the theoretical analysis, numerical simulation and experimental verification, five unique thermal response features of the cracks stimulated by two scanning modes were discovered and summarized. These features in the thermal images include temperature sharply rising in local region, distinct increase of the area of high temperature zone, obvious ‘tailing’, ‘dislocation’ and thermal obstruction phenomenon, respectively. Therefore, with the corresponding post-processing algorithm developed here, the location and shape of surface cracks in TBCs can be efficiently detected by analyzing the information of these thermal response features. Validation tests showed that the surface cracks with the width of more than \(20\,\upmu \hbox {m}\) can be quickly detected in line-scan stage, while in point-scan stage, the \(9.5\,\upmu \hbox {m}\) wide surface cracks can be accurately detected.

Keywords

Laser multi-mode scanning thermography Thermal barrier coatings Surface crack Threshold segmentation 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [Grant No. 11372037, 11572041, and 11232008].

References

  1. 1.
    Zhu, D. M., Miller, R. A.: Thermal and environmental barrier coatings for advanced propulsion engine systems. In: NASA Technical Memoradum 1 (2004)Google Scholar
  2. 2.
    Yang, L., Zhou, Y.C., Lu, C.: Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method. Acta Mater. 59(17), 6519–6529 (2011)CrossRefGoogle Scholar
  3. 3.
    Yang, L., Zhou, Y.C., Mao, W.G., Liu, Q.X.: Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bondcoating oxidation. Surf. Interface Anal. 39(9), 761–769 (2010)CrossRefGoogle Scholar
  4. 4.
    Ghasemi, R., Shoja-Razavi, R., Mozafarinia, R., Jamali, H.: The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 40(1), 347–355 (2014)CrossRefGoogle Scholar
  5. 5.
    Zhou, B., Kokini, K.: Effect of surface pre-crack morphology on the fracture of thermal barrier coatings under thermal shock. Acta Mater. 52(14), 4189–4197 (2004)CrossRefGoogle Scholar
  6. 6.
    Yong, L., Chen, Z., Mao, Y., Yong, Q.: Quantitative evaluation of thermal barrier coating based on eddy current technique. Ndt E Int. 50, 29–35 (2012)CrossRefGoogle Scholar
  7. 7.
    Khan, A.N., Khan, S.H., Ali, F., Iqbal, M.A.: Evaluation of ZrO-24MgO ceramic coating by eddy current method. Comput. Mater. Sci. 44(3), 1007–1012 (2009)CrossRefGoogle Scholar
  8. 8.
    Biju, N., Ganesan, N., Krishnamurthy, C.V., Balasubramaniam, K.: Defect sizing simulation studies for the tone-burst Eddy current thermography using genetic algorithm based inversion. J. Nondestr. Eval. 31(4), 342–348 (2012)CrossRefGoogle Scholar
  9. 9.
    Huang, H., Liu, C., Ni, L., Zhou, C.: Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy. Rare Met. 30(1), 643–646 (2011)CrossRefGoogle Scholar
  10. 10.
    Huang, H., Liu, C., Ni, L., Zhou, C.: Evaluation of microstructural evolution of thermal barrier coatings exposed to Na\(_2\)SO\(_4\) using impedance spectroscopy. Corros. Sci. 53(4), 1369–1374 (2011)CrossRefGoogle Scholar
  11. 11.
    Mohan, R., Prathap, G.: An acoustic emission energy analysis and its use to study damage in laminated composites. J. Nondestr. Eval. 1(4), 225–233 (1980)CrossRefGoogle Scholar
  12. 12.
    Franke, B., Sohn, Y.H., Chen, X., Price, J.R., Mutasim, Z.: Monitoring damage evolution in thermal barrier coatings with thermal wave imaging. Surf. Coat. Technol. 200(5–6), 1292–1297 (2005)CrossRefGoogle Scholar
  13. 13.
    Marinetti, S., Robba, D., Cernuschi, F., Bison, P.G., Grinzato, E.: Thermographic inspection of TBC coated gas turbine blades: discrimination between coating over-thicknesses and adhesion defects. Infrared Phys. Technol. 49(3), 281–285 (2007)CrossRefGoogle Scholar
  14. 14.
    Ghiassi, B., Silva, S.M., Oliveira, D.V., Lourenço, P.B., Bragança, L.: FRP-to-masonry bond durability assessment with infrared thermography method. J. Nondestr. Eval. 33(3), 427–437 (2014)CrossRefGoogle Scholar
  15. 15.
    Ptaszek, G., Cawley, P., Almond, D., Pickering, S.: Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems. NDT E Int. 45(1), 491–498 (2012)CrossRefGoogle Scholar
  16. 16.
    Sun, J.G.: Analysis of pulsed thermography method for defect depth prediction. J. Heat Trans. 128(4), 329–338 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhao, S.B., Zhang, C.L., Nai-Ming, W.U., Wang, H.M.: Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography. Prog. Nat. Sci. 21(04), 301–306 (2011)CrossRefGoogle Scholar
  18. 18.
    Ptaszek, G., Cawley, P., Almond, D., Pickering, S.: Transient thermography testing of unpainted thermal barrier coating (TBC) systems. Ndt E Int. 59(1), 48–56 (2013)CrossRefGoogle Scholar
  19. 19.
    Salazar, A., Mendioroz, A., Apiñaniz, E., Pradere, C., Noël, F., Batsale, J.C.: Extending the flash method to measure the thermal diffusivity of semitransparent solids. Meas. Sci. Technol. 25(3), 035604 (2014)CrossRefGoogle Scholar
  20. 20.
    Cernuschi, F., Capelli, S., Bison, P.: Non-destructive thermographic monitoring of crack evolution of thermal barrier coating coupons during cyclic oxidation aging. Acta Mater. 59(16), 6351–6361 (2011)CrossRefGoogle Scholar
  21. 21.
    Bison, P.G., FedericoCernuschi, ErmannoGrinzato: Ageing evaluation of thermal barrier coating: comparison between pulsed thermography and thermal wave interferometry. Quant. Infrared Thermogr. J. 3(2), 169–181 (2006)CrossRefGoogle Scholar
  22. 22.
    Celorrio, R., Omella, A.J., Pechmay, N.W., Oleaga, A., Mendioroz, A., Salazar, A.: Vertical cracks characterization using lock-in thermography: II finite cracks. Meas. Sci. Technol. 25(11), 115601 (2014)CrossRefGoogle Scholar
  23. 23.
    Burrows, S.E., Dixon, S., Pickering, S.G., Li, T., Almond, D.P.: Thermographic detection of surface breaking defects using a scanning laser source. NDT E Int. 44(7), 589–596 (2011)CrossRefGoogle Scholar
  24. 24.
    Li, T., Almond, D.P., Rees, D.A.S.: Crack imaging by scanning pulsed laser spot thermography. NDT E Int. 44(2), 216–225 (2010)CrossRefGoogle Scholar
  25. 25.
    An, Y.K., Ji, M.K., Sohn, H.: Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures. NDT E Int. 65(5), 54–63 (2014)CrossRefGoogle Scholar
  26. 26.
    Krapez, J.C.: Spatial resolution of the flying spot camera with respect to cracks and optical variations. In: Proceedings of the International Conference on AIP, pp. 377–379 (1999)Google Scholar
  27. 27.
    Gruss, C., Lepoutre, F., Balageas, D.: Nondestructive evaluation using a flying-spot camera. In: Proceedings of the International Conference on Thermo, (1993)Google Scholar
  28. 28.
    Woolard, D. F., Cramer, K. E.: Line scan versus flash thermography: comparative study on reinforced carbon-carbon. In: Proceedings of The International Society for Optical Engineering, SPIE-5782 (2005)Google Scholar
  29. 29.
    Woolard, D.F., Cramer, K.E.: The thermal photocopier: a new concept for thermal NDT. Proc. SPIE 5405, 366–373 (2004)CrossRefGoogle Scholar
  30. 30.
    Chang, D.M., Wang, B.L.: Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng. Fract. Mech. 94, 29–36 (2012)CrossRefGoogle Scholar
  31. 31.
    Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations