Skip to main content
Log in

Laser Multi-mode Scanning Thermography Method for Fast Inspection of Micro-cracks in TBCs Surface

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Conventional non-destructive testing methods are difficult to be applied in defect detection of thermal barrier coating (TBCs) because of some of its characteristics, such as porosity and thin thickness, etc. For detecting surface cracks in TBCs, a laser multi-modes scanning thermography (SMLT) method has been developed in this paper, combining fast scan mode using linear laser with fine scan mode using point laser on the tested specimen surface. Linear scanning has a large detection range and detection speed, and point scanning has a higher sensitivity. Through the theoretical analysis, numerical simulation and experimental verification, five unique thermal response features of the cracks stimulated by two scanning modes were discovered and summarized. These features in the thermal images include temperature sharply rising in local region, distinct increase of the area of high temperature zone, obvious ‘tailing’, ‘dislocation’ and thermal obstruction phenomenon, respectively. Therefore, with the corresponding post-processing algorithm developed here, the location and shape of surface cracks in TBCs can be efficiently detected by analyzing the information of these thermal response features. Validation tests showed that the surface cracks with the width of more than \(20\,\upmu \hbox {m}\) can be quickly detected in line-scan stage, while in point-scan stage, the \(9.5\,\upmu \hbox {m}\) wide surface cracks can be accurately detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhu, D. M., Miller, R. A.: Thermal and environmental barrier coatings for advanced propulsion engine systems. In: NASA Technical Memoradum 1 (2004)

  2. Yang, L., Zhou, Y.C., Lu, C.: Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method. Acta Mater. 59(17), 6519–6529 (2011)

    Article  Google Scholar 

  3. Yang, L., Zhou, Y.C., Mao, W.G., Liu, Q.X.: Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bondcoating oxidation. Surf. Interface Anal. 39(9), 761–769 (2010)

    Article  Google Scholar 

  4. Ghasemi, R., Shoja-Razavi, R., Mozafarinia, R., Jamali, H.: The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 40(1), 347–355 (2014)

    Article  Google Scholar 

  5. Zhou, B., Kokini, K.: Effect of surface pre-crack morphology on the fracture of thermal barrier coatings under thermal shock. Acta Mater. 52(14), 4189–4197 (2004)

    Article  Google Scholar 

  6. Yong, L., Chen, Z., Mao, Y., Yong, Q.: Quantitative evaluation of thermal barrier coating based on eddy current technique. Ndt E Int. 50, 29–35 (2012)

    Article  Google Scholar 

  7. Khan, A.N., Khan, S.H., Ali, F., Iqbal, M.A.: Evaluation of ZrO-24MgO ceramic coating by eddy current method. Comput. Mater. Sci. 44(3), 1007–1012 (2009)

    Article  Google Scholar 

  8. Biju, N., Ganesan, N., Krishnamurthy, C.V., Balasubramaniam, K.: Defect sizing simulation studies for the tone-burst Eddy current thermography using genetic algorithm based inversion. J. Nondestr. Eval. 31(4), 342–348 (2012)

    Article  Google Scholar 

  9. Huang, H., Liu, C., Ni, L., Zhou, C.: Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy. Rare Met. 30(1), 643–646 (2011)

    Article  Google Scholar 

  10. Huang, H., Liu, C., Ni, L., Zhou, C.: Evaluation of microstructural evolution of thermal barrier coatings exposed to Na\(_2\)SO\(_4\) using impedance spectroscopy. Corros. Sci. 53(4), 1369–1374 (2011)

    Article  Google Scholar 

  11. Mohan, R., Prathap, G.: An acoustic emission energy analysis and its use to study damage in laminated composites. J. Nondestr. Eval. 1(4), 225–233 (1980)

    Article  Google Scholar 

  12. Franke, B., Sohn, Y.H., Chen, X., Price, J.R., Mutasim, Z.: Monitoring damage evolution in thermal barrier coatings with thermal wave imaging. Surf. Coat. Technol. 200(5–6), 1292–1297 (2005)

    Article  Google Scholar 

  13. Marinetti, S., Robba, D., Cernuschi, F., Bison, P.G., Grinzato, E.: Thermographic inspection of TBC coated gas turbine blades: discrimination between coating over-thicknesses and adhesion defects. Infrared Phys. Technol. 49(3), 281–285 (2007)

    Article  Google Scholar 

  14. Ghiassi, B., Silva, S.M., Oliveira, D.V., Lourenço, P.B., Bragança, L.: FRP-to-masonry bond durability assessment with infrared thermography method. J. Nondestr. Eval. 33(3), 427–437 (2014)

    Article  Google Scholar 

  15. Ptaszek, G., Cawley, P., Almond, D., Pickering, S.: Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems. NDT E Int. 45(1), 491–498 (2012)

    Article  Google Scholar 

  16. Sun, J.G.: Analysis of pulsed thermography method for defect depth prediction. J. Heat Trans. 128(4), 329–338 (2006)

    Article  MathSciNet  Google Scholar 

  17. Zhao, S.B., Zhang, C.L., Nai-Ming, W.U., Wang, H.M.: Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography. Prog. Nat. Sci. 21(04), 301–306 (2011)

    Article  Google Scholar 

  18. Ptaszek, G., Cawley, P., Almond, D., Pickering, S.: Transient thermography testing of unpainted thermal barrier coating (TBC) systems. Ndt E Int. 59(1), 48–56 (2013)

    Article  Google Scholar 

  19. Salazar, A., Mendioroz, A., Apiñaniz, E., Pradere, C., Noël, F., Batsale, J.C.: Extending the flash method to measure the thermal diffusivity of semitransparent solids. Meas. Sci. Technol. 25(3), 035604 (2014)

    Article  Google Scholar 

  20. Cernuschi, F., Capelli, S., Bison, P.: Non-destructive thermographic monitoring of crack evolution of thermal barrier coating coupons during cyclic oxidation aging. Acta Mater. 59(16), 6351–6361 (2011)

    Article  Google Scholar 

  21. Bison, P.G., FedericoCernuschi, ErmannoGrinzato: Ageing evaluation of thermal barrier coating: comparison between pulsed thermography and thermal wave interferometry. Quant. Infrared Thermogr. J. 3(2), 169–181 (2006)

    Article  Google Scholar 

  22. Celorrio, R., Omella, A.J., Pechmay, N.W., Oleaga, A., Mendioroz, A., Salazar, A.: Vertical cracks characterization using lock-in thermography: II finite cracks. Meas. Sci. Technol. 25(11), 115601 (2014)

    Article  Google Scholar 

  23. Burrows, S.E., Dixon, S., Pickering, S.G., Li, T., Almond, D.P.: Thermographic detection of surface breaking defects using a scanning laser source. NDT E Int. 44(7), 589–596 (2011)

    Article  Google Scholar 

  24. Li, T., Almond, D.P., Rees, D.A.S.: Crack imaging by scanning pulsed laser spot thermography. NDT E Int. 44(2), 216–225 (2010)

    Article  Google Scholar 

  25. An, Y.K., Ji, M.K., Sohn, H.: Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures. NDT E Int. 65(5), 54–63 (2014)

    Article  Google Scholar 

  26. Krapez, J.C.: Spatial resolution of the flying spot camera with respect to cracks and optical variations. In: Proceedings of the International Conference on AIP, pp. 377–379 (1999)

  27. Gruss, C., Lepoutre, F., Balageas, D.: Nondestructive evaluation using a flying-spot camera. In: Proceedings of the International Conference on Thermo, (1993)

  28. Woolard, D. F., Cramer, K. E.: Line scan versus flash thermography: comparative study on reinforced carbon-carbon. In: Proceedings of The International Society for Optical Engineering, SPIE-5782 (2005)

  29. Woolard, D.F., Cramer, K.E.: The thermal photocopier: a new concept for thermal NDT. Proc. SPIE 5405, 366–373 (2004)

    Article  Google Scholar 

  30. Chang, D.M., Wang, B.L.: Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng. Fract. Mech. 94, 29–36 (2012)

    Article  Google Scholar 

  31. Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [Grant No. 11372037, 11572041, and 11232008].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanwei Liu or Huimin Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, D., Shi, W., Liu, Z. et al. Laser Multi-mode Scanning Thermography Method for Fast Inspection of Micro-cracks in TBCs Surface. J Nondestruct Eval 37, 30 (2018). https://doi.org/10.1007/s10921-018-0485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0485-1

Keywords

Navigation