Advertisement

Infrared Thermographic Testing of Steel Structures by Using the Phenomenon of Heat Release Caused by Deformation

  • E. A. Moyseychik
  • V. P. Vavilov
  • M. V. Kuimova
Article

Abstract

Deformation of steel parts is accompanied by either heating or cooling of particular zones depending on deformation mechanism. The use of infrared thermographic equipment allows analyzing spatial/temporal temperature distributions on the surface of steel parts thus allowing the evaluation of heat release caused by deformation in bulk material. Determination of stressed state in critical parts by analyzing infrared thermograms can be most simply conducted for components subjected to uniaxial tension–compression. The paper describes some potentials and problems of nondestructive testing of steel parts and constructions based on the analysis of heat release caused by deformation. By analyzing this methodology, it is possible to better evaluate the life expectancy of critical parts in steel structures (components of offshore oil platforms, seismic-resistant buildings, frames of large mining trucks, etc.).

Keywords

Infrared thermography Nondestructive testing Steel part Deformation Heat generation 

Notes

Acknowledgements

This study was supported by Tomsk Polytechnic University Competitiveness Enhancement Program, and in part by the Russian Scientific Foundation Grant #17-19-01047.

References

  1. 1.
    Bulnes, F.G., García, D.F., de la Calle, F.J., Usamentiaga, R., Molleda, J.: A non-invasive technique for online detection on steel strip surface. J. Nondestruct. Eval. 35(4), 54 (2016).  https://doi.org/10.1007/s10921-016-0370-8 CrossRefGoogle Scholar
  2. 2.
    Siakavellas, N.J.: The influence of the heating rate and thermal energy on crack detection by eddy current thermography. J. Nondestruct. Eval. 35(29), 29 (2016).  https://doi.org/10.1007/s10921-016-0337-9 CrossRefGoogle Scholar
  3. 3.
    Cadelano, G., Bortolin, A., Ferrarini, G., Molinas, B., Giantin, D., Zonta, P., Bison, P.: Corrosion detection in pipelines using infrared thermography: experiments and data processing methods. J. Nondestruct. Eval. 35(3), 49 (2016).  https://doi.org/10.1007/s10921-016-0365-5 CrossRefGoogle Scholar
  4. 4.
    Sharkeev, Y.P., Vavilov, V.P., Belyavskaya, O.A., Skripnyak, V.A., Nesteruk, D.A., Kozulin, A.A., Kim, V.M.: Analyzing deformation and damage of VT1-0 titanium in different structural states by using infrared thermography. J. Nondestruct. Eval. 35, 42 (2016).  https://doi.org/10.1007/s10921-016-0349-5 CrossRefGoogle Scholar
  5. 5.
    Bell, J.F.: The experimental foundations of solid mechanics. In: Truesdell, C. (ed.) Mechanics of Solids: Volume 1. Springer, New York (1973)CrossRefGoogle Scholar
  6. 6.
    Weber, W.: Über die specifische Wärme fester Körper, insbesondere der Metalle. Annalen der Physik und Chemie. Zweite Serie 20, 177–213 (1830)Google Scholar
  7. 7.
    Hort, H.: Die Wärmevorgänge beim Recken von Metallen. Mitt. Forschungsarbeit. Ing.Wes, H. 41, pp. 1-53 (1907)Google Scholar
  8. 8.
    Thomson, W.: On the thermoelastic and thermomagnetic properties of matter. Quart. J. Math. 1, 57–77 (1857)Google Scholar
  9. 9.
    Cottrell, A.H., Stokes, R.J.: Effects of temperature on the plastic properties of aluminium crystals. Proc. R. Soc. Lond. Ser. A. 233(1192), 17–34 (1955)CrossRefGoogle Scholar
  10. 10.
    Basinski, Z.S.: Thermally activated glide in face-centred cubic metals and its application to the theory of strain hardening. Philos. Mag. 4, 393–432 (1959)CrossRefGoogle Scholar
  11. 11.
    Hilarov, V.L., Slutsker, A.I.: Description of the thermoelastic effect in solids in a wide temperature range. Phys. Solid State 56(12), 2493–2495 (2014).  https://doi.org/10.1134/S1063783414120117 CrossRefGoogle Scholar
  12. 12.
    Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ivanchenko, I.P., Voevodin, S.I., Prokopenko, A.N.: Full-scale investigation of hydrodynamic loads on the fasteners of the turbine cover. Gidroénergetika 3(28), 5–11 (2012). (in Russian)Google Scholar
  14. 14.
    Moyseychik, E.A.: The elastic limit of mounting studs for securing the cover of the turbine of the hydroelectric unit and the development of a monitoring system for evaluating their working capacity. Gidrotehnicheskoe Stroitel’stvo 3, 43–47 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. Moyseychik
    • 1
  • V. P. Vavilov
    • 2
    • 3
  • M. V. Kuimova
    • 2
  1. 1.Mechanical Engineering DepartmentNovosibirsk State Academy of BuildingNovosibirskRussia
  2. 2.Institute of Nondestructive TestingNational Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Mechanical Engineering DepartmentNational Research Tomsk State UniversityTomskRussia

Personalised recommendations