Skip to main content
Log in

A Novel Nonlinear Acoustic Health Monitoring Approach for Detecting Loose Bolts

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

To date, sensors have been the inevitable component of structural health monitoring (SHM) systems. Typically, sensory signals are digitized, processed by computers, and then the information is presented to the operator with plots or warnings depending on the sophistication of the system. This study proposes a novel nonlinear acoustic health monitoring (NAHM) approach for detection of loose bolts, which can work with and without any sensors. The structure is excited with bitonal excitations, which their difference is in the audible range. When the bolts are well tightened, the structure remains silent. But, the structure creates audible sound or verbal warnings in the presence of one or more loose bolts. There is no need for sensor(s), A/D converters or computers between the operator and the structure. However, it is also possible to attach a piezoelectric sensor or to use a microphone/sound level meter for further analysis of the structure’s response. The feasibility of the concept was demonstrated by detecting the loose bolt in a bolted plate system. For demonstrating the industrial potential of the proposed NAHM system, the concept was implemented for two simple washers held with nuts and bolts. Additionally, the intensities of the audible alarms were studied at different torque levels. The proposed NAHM may be used as a low-cost sensor-free SHM or as a backup for conventional nonlinear SHM systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Giurgiutiu, V., Zagrai, A., Jing Bao, J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Heal. Monit. 1(1), 41–61 (2002)

    Article  Google Scholar 

  2. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39(2), 91–114 (2007)

    Article  Google Scholar 

  3. Liu, Y., Mohanty, S., Chattopadhyay, A.: Condition based structural health monitoring and prognosis of composite structures under uniaxial and biaxial loading. J. Nondestruct. Eval. 29(3), 181–188 (2010)

    Article  Google Scholar 

  4. Brownjohn, J.M.W.: Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. Lond. A 365(1851), 589–622 (2007)

    Article  Google Scholar 

  5. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics—a review. Mech. Syst. Signal Process. 86, 1–18 (2016)

    Google Scholar 

  6. Poozesh, P., Aizawa, K., Niezrecki, C., Baqersad, J., Inalpolat, M., Heilmann, G.: Structural health monitoring of wind turbine blades using acoustic microphone array. Struct. Heal. Monit. 16(4), 471–485 (2016)

    Article  Google Scholar 

  7. Zhao, X., et al.: Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches. Smart Mater. Struct. 16(4), 1218–1225 (2007)

    Article  Google Scholar 

  8. Park, G., Farrar, C.R., di Scalea, F.L., Coccia, S.: Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 15(6), 1673–1683 (2006)

    Article  Google Scholar 

  9. Bhuiyan, M., Shen, Y., Giurgiutiu, V.: Guided wave based crack detection in the rivet hole using global analytical with local FEM approach. Materials (Basel) 9(7), 602 (2016)

    Article  Google Scholar 

  10. Giurgiutiu, V., Gresil, M., Lin, B., Cuc, A., Shen, Y., Roman, C.: Predictive modeling of piezoelectric wafer active sensors interaction with high-frequency structural waves and vibration. Acta Mech. 223(8), 1681–1691 (2012)

    Article  MATH  Google Scholar 

  11. Staszewski, W.J., Mahzan, S., Traynor, R.: Health monitoring of aerospace composite structures—active and passive approach. Compos. Sci. Technol. 69(11–12), 1678–1685 (2009)

    Article  Google Scholar 

  12. Zaleha, M., Mahzan, S., Idris, M.I.: Passive damage detection of natural fibre reinforced composites using sensor response data. Appl. Mech. Mater. 534, 17–23 (2014)

    Article  Google Scholar 

  13. Bhuiyan, M.Y., Bao, J., Poddar, B., Giurgiutiu, V.: Towards identifying crack-length related resonances in acoustic emission waveforms for SHM applications. Struct. Heal. Monit. Int. J. (2017). https://doi.org/10.1177/1475921717707356

  14. Sabra, K.G., Huston, S.: Passive structural health monitoring of a high-speed naval ship from ambient vibrations. J. Acoust. Soc. Am. 129(5), 2991–2999 (2011)

    Article  Google Scholar 

  15. Joseph, R., Bhuiyan, M. Y., Giurgiutiu, V.: Acoustic emission source modeling in a plate using buried moment tensors. In: Proceedings of SPIE on Health Monitoring of Structural and Biological Systems, vol. 10170, pp. 1017028-1–8 (2017)

  16. Stoyko, D.K., Popplewell, N., Shah, A.H.: Finding a pipe’s elastic and dimensional properties using ultrasonic guided wave cut-off frequencies. NDT&E Int. 43(7), 568–578 (2010)

    Article  Google Scholar 

  17. Siqueira, M.H.S., Gatts, C.E.N., Da Silva, R.R., Rebello, J.M.A.: The use of ultrasonic guided waves and wavelets analysis in pipe inspection. Ultrasonics 41(10), 785–797 (2004)

    Article  Google Scholar 

  18. Glaser, S.D., Li, M., Wang, M.L., Ou, J., Lynch, J.: Sensor technology innovation for the advancement of structural health monitoring: a strategic program of US-China research for the next decade. Smart Struct. Syst. 3(2), 221–244 (2007)

    Article  Google Scholar 

  19. Giurgiutiu, V.: Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J. Intell. Mater. Syst. Struct. 16(4), 291–305 (2005)

    Article  Google Scholar 

  20. Carandente, R., Lovstad, A., Cawley, P.: The influence of sharp edges in corrosion profiles on the reflection of guided waves. NDT&E Int. 52, 57–68 (2012)

    Article  Google Scholar 

  21. Yuan, W.C., Zhou, L., Yuan, F.G.: Wave reflection and transmission in composite beams containing semi-infinite delamination. J. Sound Vib. 313(3–5), 676–695 (2008)

    Article  Google Scholar 

  22. Ma, S., Wu, Z., Wang, Y., Liu, K.: The reflection of guided waves from simple dents in pipes. Ultrasonics 57, 190–197 (2015)

    Article  Google Scholar 

  23. Ihn, J.B., Chang, F.-K.: Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Struct. Heal. Monit. 7(1), 5–19 (2008)

    Article  Google Scholar 

  24. Stoyko, D.K., Popplewell, N., Shah, A.H.: Detecting and describing a notch in a pipe using singularities. Int. J. Solids Struct. 51(15), 2729–2743 (2014)

    Article  Google Scholar 

  25. Li, F., Liu, Z., Sun, X., Li, H., Meng, G.: Propagation of guided waves in pressure vessel. Wave Motion 52, 216–228 (2015)

    Article  Google Scholar 

  26. Kim, H.W., Lee, H.J., Kim, Y.Y.: Health monitoring of axially-cracked pipes by using helically propagating shear-horizontal waves. NDT&E Int. 46(1), 115–121 (2012)

    Article  Google Scholar 

  27. Lee, J.-H., Lee, S.-J.: Application of laser-generated guided wave for evaluation of corrosion in carbon steel pipe. NDT&E Int. 42(3), 222–227 (2009)

    Article  Google Scholar 

  28. Senyurek, V.Y., Baghalian, A., Tashakori, S., McDaniel, D., Tansel, I.N.: Localization of multiple defects using the compact phased array (CPA) method. J. Sound Vib. 413, 383–394 (2018)

    Article  Google Scholar 

  29. Giurgiutiu, V., Bao, J.: Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures. Struct. Heal. Monit. 3(2), 121–140 (2004)

    Article  Google Scholar 

  30. Annamdas, V.G., Radhika, M.A.: Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: a review of wired, wireless and energy-harvesting methods. J. Intell. Mater. Syst. Struct. 24(9), 1021–1042 (2013)

    Article  Google Scholar 

  31. Gresil, M., Yu, L., Giurgiutiu, V., Sutton, M.: Predictive modeling of electromechanical impedance spectroscopy for composite materials. Struct. Heal. Monit. 11(6), 671–683 (2012)

    Article  Google Scholar 

  32. Kamas, T., Giurgiutiu, V., Lin, B.: E/M impedance modeling and experimentation for the piezoelectric wafer active sensor. Smart Mater. Struct. 24(11), 115040 (2015)

    Article  Google Scholar 

  33. Overly, T.G.S., et al.: Development of an extremely compact impedance-based wireless sensing device. Smart Mater. Struct. 17(6), 65011 (2008)

    Article  Google Scholar 

  34. Tuncay Kamas, B.L., Victor, G.: odeling and experimentation of thickness mode E/M impedance and rayleigh wave propagation for piezoelectric wafer active sensors on thick plates. In: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (2014)

  35. Baghalian, A., Tashakori, S., Senyurek, V.Y., Mcdaniel, D., Fekrmandi, H., Tansel, I.N.: Non-contact quantification of longitudinal and circumferential defects in pipes using the surface response to excitation (SuRE) method. Int. J. Progn. Heal. Manag. 8(2), 8 (2017)

    Google Scholar 

  36. Baghalian, A., Tashakori, S., Soto, J.R., Senyurek, V.Y., Tansel, I.N., Uragun, B.: Internal defect detection in hollow cylindrical structures using the surface response to excitation (SuRE) method. In: Proceedings of 8th International Conference on Recent Advances in Space Technologies, RAST 2017, pp. 523–527 (2017)

  37. Tashakori, S., Baghalian, A., Cuervo, J., Senyurek, V.Y., Tansel, I.N., Uragun, B.: Inspection of the machined features created at the embedded sensor aluminum plates. In: 2017 8th International Conference on Recent Advances in Space Technologies (RAST), pp. 517–522 (2017)

  38. Fekrmandi, H., et al.: A non-contact method for part-based process performance monitoring in end milling operations. Int. J. Adv. Manuf. Technol. 83(1–4), 13–20 (2016)

    Article  Google Scholar 

  39. Tashakori, S., et al.: Load monitoring using surface response to excitation method. In: Ralph, W.C., Singh, R., Tandon, G., Thakre, P.R., Zavattieri, P., Zhu, Y. (eds.) Mechanics of Composite and Multi-functional Materials, vol. 7. Springer, Cham (2017)

    Google Scholar 

  40. Baghalian, A., et al.: Implementation of the surface response to excitation method for pipes. In: Mechanics of Composite and Multi-functional Materials, pp. 261–266. Springer (2017)

  41. Xu, B., Giurgiutiu, V.: Single mode tuning effects on lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring. J. Nondestruct. Eval. 26(2–4), 123–134 (2007)

    Article  Google Scholar 

  42. Watkins, R., Jha, R.: A modified time reversal method for Lamb wave based diagnostics of composite structures. Mech. Syst. Signal Process. 31, 345–354 (2012)

    Article  Google Scholar 

  43. Leutenegger, T., Dual, J.: Non-destructive testing of tubes using a time reverse numerical simulation (TRNS) method. Ultrasonics 41(10), 811–822 (2004)

    Article  Google Scholar 

  44. Zumpano, G., Meo, M.: Damage localization using transient non-linear elastic wave spectroscopy on composite structures 43, 217–230 (2008)

    Google Scholar 

  45. Van Den Abeele, K.E., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 34(4), 239–248 (2001)

    Article  Google Scholar 

  46. Meo, M., Polimeno, U., Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl. Compos. Mater. 15(3), 115–126 (2008)

    Article  Google Scholar 

  47. He, Q., Lin, Y.: Assessing the severity of fatigue crack using acoustics modulated by hysteretic vibration for a cantilever beam. J. Sound Vib. 370, 306–318 (2016)

    Article  Google Scholar 

  48. Fierro, G.P.M., Ciampa, F., Ginzburg, D., Onder, E., Meo, M.: Nonlinear ultrasound modelling and validation of fatigue damage. J. Sound Vib. 343, 121–130 (2015)

    Article  Google Scholar 

  49. Van Den Abeele, K.E.-A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000)

    Article  Google Scholar 

  50. Ulrich, T.J., Remillieux, M., Le Bas, P.-Y., Payan, C.: Multimode nonlinear resonant ultrasound spectroscopy (NRUS): from one-dimensional to three-dimensional characterization of the hysteretic elastic nonlinearity. J. Acoust. Soc. Am. 138(3), 1886–1886 (2015)

    Article  Google Scholar 

  51. Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121(4), EL125–EL130 (2007)

    Article  Google Scholar 

  52. Kober, J., Prevorovsky, Z.: Theoretical investigation of nonlinear ultrasonic wave modulation spectroscopy at crack interface. NDT&E Int. 61, 10–15 (2014)

    Article  Google Scholar 

  53. Baghalian, A., Tashakori, S., Senyurek, V.Y., Unal, M., Tansel, I.N.: Novel approaches for loose bolt detection with and without sensors using heterodyning effect. In: Proceedings of the Eleventh International Workshop on Structural Health Monitoring (2017)

  54. Zhang, Z., Xu, H., Liao, Y., Su, Z., Xiao, Y.: Vibro-acoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints. Compos. Struct. 176, 505–515 (2017)

    Article  Google Scholar 

  55. Tashakori, S., Baghalian, A., Senyurek, V.Y., Unal, M., McDaniel, D., Tansel, I.N.: Implementation of heterodyning effect for monitoring the health of adhesively bonded and fastened composite joints. Appl. Ocean Res. 72, 51–59 (2018)

    Article  Google Scholar 

  56. Farhangdoust, S., Younesian, D., Esmailzadeh, E.: Interaction of higher modes in nonlinear free vibration of stiffened rectangular plates. In: 29th Conference on Mechanical Vibration and Noise, vol. 8, p. V008T12A043 (2017)

  57. Poon, T.-C.: Detection\({\vert }\)heterodyning. In: Encyclopedia of Modern Optics, pp. 201–206 (2005)

  58. Sandalidis, H.G., Tsiftsis, T.A., Karagiannidis, G.K.: Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. J. Light. Technol. 27(20), 4440–4445 (2009)

    Article  Google Scholar 

  59. Weng, C., Lin, Y., Way, W.I.: Radio-over-fiber 16-QAM, 100-km transmission at 5 Gb/s using DSB-SC transmitter and remote heterodyne detection. J. Light. Technol. 26(6), 643–653 (2008)

    Article  Google Scholar 

  60. Joo, K.-N., Ellis, J.D., Buice, E.S., Spronck, J.W., Schmidt, R.H.M.: High resolution heterodyne interferometer without detectable periodic nonlinearity. Opt. Express 18(2), 1159–1165 (2010)

    Article  Google Scholar 

  61. Amerini, F., Meo, M.: Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Struct. Heal. Monit. 10(6), 659–672 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Graduate School, Florida International University for providing support for this research in the form of Doctoral Evidence Acquisition (DEA) and Dissertation Year Fellowships (DYF) for Dr. Amin Baghalian and Shervin Tashakori.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Baghalian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghalian, A., Senyurek, V.Y., Tashakori, S. et al. A Novel Nonlinear Acoustic Health Monitoring Approach for Detecting Loose Bolts. J Nondestruct Eval 37, 24 (2018). https://doi.org/10.1007/s10921-018-0478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0478-0

Keywords

Navigation