Skip to main content
Log in

Influence of Composite Ply Layup on Active Thermographic Non-destructive Inspection of Carbon Fiber-Reinforced Plastic Laminates

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper examines the effect of the composite ply layup on defect detection using non-destructive active thermographic inspection of carbon fiber-reinforced plastic (CFRP) laminates. Numerical calculations using simplified models were performed and verified experimentally. The results indicated that the local temperature contrast (\(\Delta T\)) observed on the surface of the laminates, generally caused by existing internal defects, depended on two characteristics of the laminates: the difference between the orientation angles of neighboring layers \((\theta _{\mathrm{d}})\) and the number of different orientation angles in the layers \((N_{\mathrm{a}})\). The \(\Delta T\) was higher when \(\theta _{\mathrm{d}}\) and \(N_{\mathrm{a}}\) were small. These effects were more clearly observed when inspecting CFRPs reinforced with carbon fibers with higher thermal conductivity (such as pitch-based fibers), and when the number of layers is larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hosur, M.V., Murthy, C.R.L., Ramamurthy, T.S., Shet, A.: Estimation of impact-induced damage in CFRR laminates through ultrasonic imaging. NDT & E Int. 31(5), 359–374 (1998)

    Article  Google Scholar 

  2. Scarponi, C., Briotti, G.: Ultrasonic technique for the evaluation of delaminations on CFRP, GFRP, KFRP composite materials. Compos. Part B 31(3), 237–243 (2000)

    Article  Google Scholar 

  3. Benammar, A., Drai, R., Guessoum, A.: Detection of delamination defects in CFRP materials using ultrasonic signal processing. Ultrasonics 48(8), 731–738 (2008)

    Article  Google Scholar 

  4. Raišutis, R., Kažys, R., Žukauskas, E., Mažeika, L.: Ultrasonic air-coupled testing of square-shape CFRP composite rods by means of guided waves. NDT & E Int. 44(7), 645–654 (2011)

    Article  Google Scholar 

  5. Ochôa, P., Infante, V., Silva, J.M., Groves, R.M.: Detection of multiple low-energy impact damage in composite plates using Lamb wave techniques. Compos. Part B 80, 291–298 (2015)

    Article  Google Scholar 

  6. Schilling, P.J., Karedla, B.R., Tatiparthi, A.K., Verges, M.A., Herrington, P.D.: X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos. Sci. Technol. 65(14), 2071–2078 (2005)

    Article  Google Scholar 

  7. Scott, A.E., Mavrogordato, M., Wright, P., Sinclair, I., Spearing, S.M.: In situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography. Compos. Sci. Technol. 71(12), 1471–1477 (2011)

    Article  Google Scholar 

  8. Bull, D.J., Helfen, L., Sinclair, I., Spearing, S.M., Baumbach, T.: A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos. Sci. Technol. 75, 55–61 (2013)

    Article  Google Scholar 

  9. Hausherr, J.M., Krenkel, W., Fischer, F., Altstädt, V.: Nondestructive characterization of high-performance C/SiC-ceramics using X-ray-computed tomography. Int. J. Appl. Ceram. Technol. 7(3), 361–368 (2010)

    Article  Google Scholar 

  10. Gros, X.E.: An eddy current approach to the detection of damage caused by low-energy impacts on carbon fibre reinforced materials. Mater. Des. 16(3), 167–173 (1995)

    Article  Google Scholar 

  11. Mook, G., Lange, R., Koeser, O.: Non-destructive characterisation of carbon-fibre-reinforced plastics by means of eddy-currents. Compos. Sci. Technol. 61(6), 865–873 (2001)

    Article  Google Scholar 

  12. Mizukami, K., Mizutani, Y., Todoroki, A., Suzuki, Y.: Detection of in-plane and out-of-plane fiber waviness in unidirectional carbon fiber reinforced composites using eddy current testing. Compos. Part B 86, 84–94 (2016)

    Article  Google Scholar 

  13. Yang, R., He, Y.: Optically and non-optically excited thermography for composites: a review. Infrared Phys. Technol. 75, 26–50 (2016)

    Article  Google Scholar 

  14. Liu, J., Tian, G.Y., Gao, B., Ren, W., Meng, J.S.: Investigation of thermal imaging sampling frequency for eddy current pulsed thermography. NDT & E Int. 62, 85–92 (2014)

    Article  Google Scholar 

  15. Xu, C., Zhou, N., Xie, J., Gong, X., Chen, G., Song, G.: Investigation on eddy current pulsed thermography to detect hidden cracks on corroded metal surface. NDT & E Int. 84, 27–35 (2016)

    Article  Google Scholar 

  16. He, Y., Yang, R., Zhang, H., Zhou, D., Wang, G.: Volume or inside heating thermography using electromagnetic excitation for advanced composite materials. Int. J. Therm. Sci. 111, 41–49 (2017)

    Article  Google Scholar 

  17. Rantala, J., Wu, D., Busse, G.: NDT of polymer materials using lock-in thermography with water-coupled ultrasonic excitation. NDT & E Int. 31(1), 43–49 (1998)

    Article  Google Scholar 

  18. Derusova, D.A., Vavilov, V.P., Pawar, S.S.: Evaluation of equivalent defect heat generation in carbon epoxy composite under powerful ultrasonic stimulation by using infrared thermography. In: IOP Conference Series: Materials Science and Engineering, vol. 81(1), p. 012084 (2015)

  19. Almond, D.P., Peng, W.: Thermal imaging of composites. J. Microsc. 201(2), 163–170 (2001)

    Article  MathSciNet  Google Scholar 

  20. Pickering, S., Almond, D.: Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques. NDT & E Int. 41(7), 501–509 (2008)

    Article  Google Scholar 

  21. Pickering, S.G., Almond, D.P.: Comparison of the defect detection capabilities of flash thermography and vibration excitation shearography. Insight Non-Destr. Test Cond. Monit. 52(2), 78–81 (2010)

    Article  Google Scholar 

  22. Ishikawa, M., Hatta, H., Habuka, Y., Jinnai, S., Utsunomiya, S.: Effect of anisotropic properties on defect detection by pulse phase thermography. Adv. Compos. Mater. 21(1), 67–78 (2012)

    Google Scholar 

  23. Götschel, S., Maierhofer, C., Müller, J.P., Rothbart, N., Weiser, M.: Quantitative defect reconstruction in active thermography for fiber-reinforced composites. In: Proceedings of 19th World Conference on Non-Destructive Testing WCNDT-19 (2016)

  24. Bates, D., Smith, G., Lu, D., Hewitt, J.: Rapid thermal non-destructive testing of aircraft components. Compos. Part B 31(3), 175–185 (2000)

    Article  Google Scholar 

  25. Maierhofer, C., Myrach, P., Reischel, M., Steinfurth, H., Röllig, M., Kunert, M.: Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations. Compos. Part B 57, 35–46 (2014)

    Article  Google Scholar 

  26. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71(8), 3962–3965 (1992)

    Article  Google Scholar 

  27. Wu, D., Busse, G.: Lock-in thermography for nondestructive evaluation of materials. Rev Gén Therm. 37(8), 693–703 (1998)

    Article  Google Scholar 

  28. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79(5), 2694–2698 (1996)

    Article  Google Scholar 

  29. Maldague, X., Largouet, Y., Couturier, J.P.: A study of defect depth using neural networks in pulsed phase thermography: modelling, noise, experiments. Rev Gén Therm. 37(8), 704–717 (1998)

    Article  Google Scholar 

  30. Shepard, S.M.: Advances in thermographic NDT. Proc. SPIE 5074, 882–887 (2003)

    Article  Google Scholar 

  31. Shepard, S.M.: System for generating thermographic images using thermographic signal reconstruction. U.S. Patent No 6,751,342 (2004)

  32. Toray Carbon Fibers America, Inc.http://www.toraycfa.com/product.html

  33. Mitsubishi Chemical Corporation. https://www.m-chemical.co.jp/en/index.html

  34. Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15(2), 175–194 (1981)

    Article  Google Scholar 

  35. Fukuda, H., Takahashi, K., Toda, S.: Thermal deformation of anti-symmetric laminates at cure. In: Proceedings of the 10th International Conference on Composite Materials ICCM-10 (1995)

  36. Vavilov, V., Marinetti, S., Nesteruk, D.: Accuracy issues in modeling thermal NDT problems. Proc. SPIE 6939, 693913 (2008)

    Article  Google Scholar 

  37. Vavilov, V.P.: Modeling thermal NDT problems. Int. J. Heat Mass Trans. 72, 75–86 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by JSPS KAKENHI Grant Number 26282099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, M., Koyama, M. Influence of Composite Ply Layup on Active Thermographic Non-destructive Inspection of Carbon Fiber-Reinforced Plastic Laminates. J Nondestruct Eval 37, 18 (2018). https://doi.org/10.1007/s10921-018-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0472-6

Keywords

Navigation