Defect Detection via Instrumented Impact in Thick-Sectioned Laminate Composites

  • Shane Esola
  • Ivan Bartoli
  • Suzanne E. Horner
  • James Q. Zheng
  • Antonios Kontsos
Article

Abstract

The application of impact-based nondestructive inspection to thick-sectioned laminate composite parts, although widely reported, is still hampered by a number of challenges. In this article, microphone-recorded impact response variations are associated with delaminations within a variety of test specimens, building in complexity from metal to composite simulant and finally toward the application of the method to hard armor protective inserts. Defective and defect-free states are verified a priori by both operator quality inspections and X-ray computed tomography. Potential delamination-discriminating metrics are determined by signal processing of vibroacoustic data. Prior reported “tap test” metrics that focus on impact force-time histories are shown to be insufficient for thick-sections laminates. The empirical results reported herein, additionally supported by simulations, suggest that large defects may be detectible via a frequency content analysis. Method limitations, potential confounds, and the extension to the case of smaller defects is discussed.

Keywords

Vibroacoustics Nondestructive evaluation Tap test Delamination Composites 

References

  1. 1.
    Spain, R., Schubring, N., Diamond, M.: An electronic ear for certifying reliability. Mater. Eval. Am. Soc. Nondestruct. Test. 22(3), 113–117 (1964)Google Scholar
  2. 2.
    Nagy, K., Dousis, D.A., Finch, R.D.: Detection of flaws in railroad wheels using acoustic signatures. J. Eng. Ind. 100(4), 459–465 (1978)CrossRefGoogle Scholar
  3. 3.
    Cawley, P.: Non-destructive testing of mass produced components by natural frequency measurements. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 199(3), 161–168 (1985)CrossRefGoogle Scholar
  4. 4.
    Cawley, P., Woolfrey, A.M., Adams, R.D.: Natural frequency measurements for production quality control of fibre composites. Composites 16(1), 23–27 (1985)CrossRefGoogle Scholar
  5. 5.
    Carino, N.J.: The impact-echo method: an overview. In: Proceedings of the 2001 Structures Congress & Exposition (2001)Google Scholar
  6. 6.
    Cheng, C., Sansalone, M.: The impact-echo response of concrete plates containing delaminations: numerical, experimental and field studies. Mater. Struct. 26(5), 274–285 (1993)CrossRefGoogle Scholar
  7. 7.
    ASTM International: Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method. Annual Book of ASTM Standards, West Conshohocken, PA (2015)Google Scholar
  8. 8.
    Oh, T., et al.: Improved interpretation of vibration responses from concrete delamination defects using air-coupled impact resonance tests. J. Eng. Mech. 139(3), 315–324 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhu, J., Popovics, J.S.: Imaging concrete structures using air-coupled impact-echo. J. Eng. Mech. 133(6), 628–640 (2007)CrossRefGoogle Scholar
  10. 10.
    ASTM International: Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse-Response Method. West Conshohocken, PA (2010)Google Scholar
  11. 11.
    Nazarian, S., Reddy, S., Baker, M.: Determination of voids under rigid pavements using impulse response method. In: Von Quintas, H.L., Bush, A.J., III, Baladi, G.Y. (eds.) Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1198, vol. 2. American Society for Testing and Materials, Philadelphia (1994)Google Scholar
  12. 12.
    Raju, P.K., Vaidya, U.K.: Nondestructive evaluation (NDE) of composites using the acoustic impact technique (AIT). In: Mitchell, M.R., Buck, O. (eds.) Cyclic Deformation, Fracture, and Nondestructive Evaluation of Advanced Materials, ASTM STP 1184, vol. 2, pp. 376–391. American Society for Testing and Materials, Philadelphia (1994)Google Scholar
  13. 13.
    Schroeer, R.: The acoustic impact technique. Non-Destruct. Test. 3(3), 194–196 (1970)CrossRefGoogle Scholar
  14. 14.
    ASTM International: Standard Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non-metallic Parts. West Conshohocken, PA (2013)Google Scholar
  15. 15.
    Jüngert, A., Große, C., Krüger, M.: Local acoustic resonance spectroscopy (LARS) for glass fiber-reinforced polymer applications. J. Nondestruct. Eval. 33(1), 23–33 (2014)Google Scholar
  16. 16.
    Lange, Y.V.: Acoustical spectral nondestructive-testing method. Sov. J. Nondestruct. Test. USSR 14(3), 193–199 (1978)Google Scholar
  17. 17.
    Avitabile, P.: Experimental modal analysis. J. Sound Vib. 35, 20–31 (2001)Google Scholar
  18. 18.
    Chopra, A.K.: Dynamics of Structures, vol. 3. Prentice Hall, Englewood Cliffs, New Jersey (1995)MATHGoogle Scholar
  19. 19.
    Luo, H., Hanagud, S.: Delamination modes in composite plates. J. Aerosp. Eng. 9(4), 106–113 (1996)CrossRefGoogle Scholar
  20. 20.
    Pardoen, G.C.: Effect of delamination on the natural frequencies of composite laminates. J. Compos. Mater. 23(12), 1200–1215 (1989)CrossRefGoogle Scholar
  21. 21.
    Pérez, M.A., Gil, L., Oller, S.: Impact damage identification in composite laminates using vibration testing. Compos. Struct. 108, 267–276 (2014)CrossRefGoogle Scholar
  22. 22.
    Cawley, P.: Low frequency NDT techniques for the detection of disbands and delaminations. Br. J. Non-Destruct. Test. 32(9), 454–461 (1990)Google Scholar
  23. 23.
    Cawley, P., Adams, R.D.: The mechanics of the coin-tap method of non-destructive testing. J. Sound Vib. 122(2), 299–316 (1988)CrossRefGoogle Scholar
  24. 24.
    Hsu, D.K., Barnard, D.J., Peters, J.J., Dayal, V.: Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft. In: Thompson, D.O., Chimenti, D.E. (eds.) Proceedings of the Twenty-Sixth Annual Symposium on Qualitative Nondestructive Evaluation. AIP Conference Proceedings, Montréal, Canada, 25–30 July, vol. 19, pp. 1857–1864. American Institute of Physics (2000)Google Scholar
  25. 25.
    Hsu, D.K., Barnard, D.J., Peters, J.J., Hudelson, N.A.: Non-Destructive Inspections and the Display of Inspection Results. US Patent 6,327,921 B1, 11 Dec 2011. Iowa State University, Ames, IAGoogle Scholar
  26. 26.
    Peters, J.J., Barnard, D.J., Hudelson, N.A., Simpson, T.S., Hsu, D.K.: A prototype tap test imaging system: initial field test results. In: Thompson, D.O., Chimenti, D.E. (eds.) Proceedings of the Twenty-Sixth Annual Symposium on Qualitative Nondestructive Evaluation. AIP Conference Proceedings, Montréal, Canada, 25–30 July, vol. 19, pp. 2053–2060. American Institute of Physics (2000)Google Scholar
  27. 27.
    Georgeson, G., Lea, S., Hansen, J.: Electronic tap hammer for composite damage assessment. In: Rempt, R.D., Broz, A.L. (eds.) Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware. Proceedings of SPIE 2945, 3 Dec, Scottsdale, AZ, vol. 2945, pp. 328–338. SPIE (1996)Google Scholar
  28. 28.
    Georgeson, G.E.: Damage Detection Device and Method. The Boeing Company, Seattle, WA (2004)Google Scholar
  29. 29.
    Mitsuhashi, K., et al.: Method and Apparatus for Impact-Type Inspection of Structures. Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (1991)Google Scholar
  30. 30.
    Pfund, B.: Portable test hammer apparatus. US Patent 5,686,652, 11 Nov 1997Google Scholar
  31. 31.
    Ibrahim, M.E.: Nondestructive evaluation of thick-section composites and sandwich structures: a review. Compos. Part A: Appl. Sci. Manuf. 64, 36–48 (2014)CrossRefGoogle Scholar
  32. 32.
    Cawley, P., Adams, R.D.: Sensitivity of the coin-tap method of nondestructive testing. Mater. Eval. 47, 558–563 (1989)Google Scholar
  33. 33.
    Carino, N.J.: Impact echo: the fundamentals. In: International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany (2015)Google Scholar
  34. 34.
    Fastl, H., Zwicker, E.: Psychoacoustics: Facts and Models. Springer, Berlin (2007)CrossRefGoogle Scholar
  35. 35.
    Wightman, F.L., Green, D.M.: The perception of pitch: the pitch of a sound wave is closely related to its frequency or periodicity–but the exact nature of that relation remains a mystery. Am. Sci. 62(2), 208–215 (1974)Google Scholar
  36. 36.
    Andreisek, G., et al.: The virtual tap test— a training system for wind turbine rotor blade inspectors. In: Proceedings of the 19th World Conference on Non-Destructive Testing (2016)Google Scholar
  37. 37.
    Giordano, B.L., Rocchesso, D., McAdams, S.: Integration of acoustical information in the perception of impacted sound sources: the role of information accuracy and exploitability. J. Exp. Psychol. Hum. Percept. Perform. 36(2), 462 (2010)CrossRefGoogle Scholar
  38. 38.
    Haynes, N., et al.: Automated non-destructive evaluation system for hard armor protective inserts of body armor. In: Personal Armour Systems Symposium. International Personal Armour Committee (IPAC), Brussels, Belgium (2008)Google Scholar
  39. 39.
    Roberson, C., et al.: Update on practical non destructive testing methods for in-service QA of ceramic body armor plates. In: Personal Armour Systems Symposium. International Personal Armour Committee (IPAC), Leeds, UKGoogle Scholar
  40. 40.
    Meitzler, T.J., et al.: Crack detection in armor plates using ultrasonic techniques. Mater. Eval. Am. Soc. Nondestruct. Test. 66, 555–559 (2008)Google Scholar
  41. 41.
    Godínez-Azcuaga, V.F., Finlayson, R.D.: Acoustic techniques for the inspection of ballistic protective inserts in personnel armor. SAMPE 39, 8–19 (2003)Google Scholar
  42. 42.
    Godínez-Azcuaga, V.F., Ozevin, D., Finlayson, R.D.: Automated Damage Assessment System for Protective Inserts Using Low Frequency Ultrasonics. US Army RDECOM-NSRDEC; Physical Acoustics Corporation, Natick, Massachusetts (2006)Google Scholar
  43. 43.
    Rayleigh, L.: The Theory of Sound. Unabridged, Second Revised, vol. I & II. Dover, New York (1945)Google Scholar
  44. 44.
    Johnson, K.L.: Mechanics, Contact, Printing, Ninth, 2003. Cambridge University Press, Cambridge (1985)Google Scholar
  45. 45.
    Cawley, P., Adams, R.: Sensitivity of the coin-tap method of nondestructive testing. Mater. Eval. 47(5), 558–563 (1989)Google Scholar
  46. 46.
    Cawley, P.: A high frequency coin-tap method of non-destructive testing. Mech. Syst. Signal Process. 5(1), 1–11 (1991)CrossRefGoogle Scholar
  47. 47.
    Cawley, P., Theodorakopoulos, C.: The membrane resonance method of non-destructive testing. J. Sound Vib. 130(2), 299–311 (1989)Google Scholar
  48. 48.
    Mackie, R., Vardy, A.: Applying the coin-tap test to adhesives in civil engineering: a numerical study. Int. J. Adhes. Adhes. 10(3), 215–220 (1990)CrossRefGoogle Scholar
  49. 49.
    Oh, T., Popovics, J.S., Sim, S.-H.: Analysis of vibration for regions above rectangular delamination defects in solids. J. Sound Vib. 332(7), 1766–1776 (2013)CrossRefGoogle Scholar
  50. 50.
    Solodov, I., Bai, J., Busse, G.: Resonant ultrasound spectroscopy of defects: case study of flat-bottomed holes. J. Appl. Phys. 113(22), 223512 (2013)Google Scholar
  51. 51.
    Esola, S., et al.: Parametric study using modal analysis of a bi-material plate with defects. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP, Boise, Idaho (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shane Esola
    • 1
  • Ivan Bartoli
    • 2
  • Suzanne E. Horner
    • 3
  • James Q. Zheng
    • 3
  • Antonios Kontsos
    • 4
  1. 1.Theoretical & Applied Mechanics Group Member, Mechanical Engineering & Mechanics DepartmentDrexel UniversityPhiladelphiaUSA
  2. 2.Civil, Architectural, and Environmental Engineering DepartmentDrexel UniversityPhiladelphiaUSA
  3. 3.Program Executive Office – Soldier, U.S. ArmyFort BelvoirUSA
  4. 4.Theoretical & Applied Mechanics Group Director, Mechanical Engineering & Mechanics DepartmentDrexel UniversityPhiladelphiaUSA

Personalised recommendations