Skip to main content
Log in

Inspecting Marquetries at Different Wavelengths: The Preliminary Numerical Approach as Aid for a Wide-Range of Non-destructive Tests

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The present study is based on the non-destructive inspection of two marquetries representing arms’ coats, which were produced by the Technical University in Zvolen (Slovakia) and tested under laboratory conditions. The aforesaid samples were made of traditional European and exotic wood species, while the veneers of the decorative layers were prepared through the technology cutting technique, emphasizing in such a manner the wooden texture. One sample was a defect-free panel, while the second one consisted of three sub-superficial flaws and one superficial putty insert, added during the manufacturing stage. The samples were inspected by different non-destructive techniques, such as visible imaging, ultraviolet testing, near-infrared reflectography and transmittography, infrared thermography, holographic interferometry, digital image correlation, laser speckle contrast imaging and ultrasonic testing. Sometimes a comparison was not performed, by avoiding unnecessary data processing. Numerical simulations focusing on the optimization of the provided thermal flux anticipated the experimental results. The latter analysis proved the necessity for the integration of experimental and numerical testing in similar case studies. A peculiarity of this work is the additional creation of an ad hoc Matlab\(^\circledR \) code, written under the LSCI conditions, which identifies the wooden texture. The interactive methodology applied in the present study verified the synergy of the selected inspection methods enabling the production of a complete view for the preservation state of the inspected marquetry samples, through the comparison and/or the correlation of the individual informative content produced by each inspection procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hamilton Jackson, F.: Intarsia and marquetry—historical notes—antiquity. In: Curnow, R., Walsh, L., The Online Distributed Proofreading Team at http://pgdp.net (eds.) Handbooks for the Designer and Craftsman. William Hodge and Company, Glasgow (2009). http://www.gutenberg.org/files/30215/30215-h/30215-h.htm

  2. Porter, B.: Timber. In: Rose, R. (ed.) Carpentry and Joinery 1. Butterworth Heinemann, Great Britain (2001). http://woodtools.nov.ru/books/carp_join/carp_join_1.pdf

  3. Edwards, C.: Improving the decoration of furniture: imitation and mechanization in the marquetry process in Britain and America, 1850–1900. Technol. Cult. 53(2), 401–434 (2012). doi:10.1353/tech.2012.0073

    Article  Google Scholar 

  4. Triboulot, M.C., Lavigne, E., Monteau, L., Boucher, N., Pizzi, A., Tekely, P.: The restoration of old wood furniture marquetry: protein glues, their analysis, upgrading and rehidratation. Holzforsch. Holzverwert. 48(4), 61–65 (1996). doi:10.1016/j.indcrop.2015.02.030

    Google Scholar 

  5. Ruzinska, E., Jabłonski, M.: Experimental model equipment for effective evaluation quality surface treatment of wooden materials. Ann. Warsaw Univ. Life Sci. SGGW For. Wood Technol. 70, 259–263 (2010)

    Google Scholar 

  6. Ruffinatto, F., Cremonini, C., Macchioni, N., Zanuttini, R.: Application of reflected light microscopy for non-invasive wood identification of marquetry furniture and small wood carvings. J. Cult. Herit. 15(6), 614–620 (2014). doi:10.1163/22941932-90000026

    Article  Google Scholar 

  7. Luxford, N., Strlic, M., Thickett, D.: Safe display parameters for veneer and marquetry objects: a review of the available information for wooden collections. Stud. Conserv. 58(1), 1–12 (2013). doi:10.1179/2047058412Y

    Article  Google Scholar 

  8. Huber, J.: Conservation in focus: true colours revealed. Icon News 48, 30–32 (2013). http://issuu.com/wallacecollection/docs/wallace_collection_whats_on_sep_nov

  9. Sfarra, S., Theodorakeas, P., Avdelidis, N.P., Koui, M.: Thermographic, ultrasonic and optical methods: a new dimension in veneered wood diagnostics. Russ. J. Nondestruct. 49(4), 234–250 (2013). doi:10.1134/S1061830913040062

    Article  Google Scholar 

  10. Radovanovic, M., Madic, M.: Experimental investigations of CO\(_{2}\) laser cut quality: a review. Nonconv. Technol. Rev. 4, 35–42 (2011). http://www.revtn.ro/pdf4-2011/07%20-%20Radovanovic%20-%20Experimental %20Investigations%20Of%20CO2%20Laser%20Cut%20Quality.pdf

  11. Cernecky, J., Bozek, P., Pivarciova, E.: A new system for measuring the deflection of the beam with the support of digital holographic interferometry. J. Electr. Eng. 66(1), 53–56 (2015)

    Google Scholar 

  12. Kreis, T.: Optical foundations of holography. In: Kreis, T. (ed.) Handbook of Holographic Interferometry—Optical and Digital Methods. Wiley-VCH, Weinheim (2005)

  13. Sfarra, S., Ibarra-Castanedo, C., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Integrated approach between pulsed thermography, near-infrared reflectography and sandwich holography for wooden panel paintings advanced monitoring. Russ. J. Nondestruct. 47(4), 284–293 (2011). doi:10.1134/S1061830911040097

    Article  Google Scholar 

  14. Sfarra, S., Theodorakeas, P., Ibarra-Castanedo, C., Avdelidis, N.P., Paoletti, A., Paoletti, D., Hrissagis, K., Bendada, A., Koui, M., Maldague, X.: Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques. Insight 54(1), 21–27 (2012). doi:10.1784/insi.2012.54.1.21

    Article  Google Scholar 

  15. Sfarra, S., Ibarra-Castanedo, C., Ridolfi, S., Cerichelli, G., Ambrosini, D., Paoletti, D., Maldague, X.: Holographic interferometry (HI), infrared vision and X-ray fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl. Phys. A 115(3), 1041–1056 (2014). doi:10.1007/s00339-013-7939-1

    Article  Google Scholar 

  16. Vest, C.M.: Holographic Interferometry. Wiley, New York (1979)

    Google Scholar 

  17. Carslaw, H.S., Jaeger, J.C.: General Theory. Oxford University Press, N.Y, Conduction of Heat in Solids (1946)

    MATH  Google Scholar 

  18. Isachenko, V., Osipova, V., Sukomel, A.: Heat Transfer. University Press of the Pacific, Honolulu (2000)

    Google Scholar 

  19. López, G., Basterra, L.A., Acuňa, L.: Estimation of wood density using infrared thermography. Constr. Build. Mater. 42, 29–32 (2013). doi:10.1016/j.conbuildmat.2013.01.001

    Article  Google Scholar 

  20. Klein MT, Ibarra-Castanedo C, Maldague XP, Bendada A (2008) A straightforward graphical user interface for basic and advanced signal processing of thermographic infrared sequences. In: Vavilov, V.P., Burleigh, D.D. (eds.) Proceedings of SPIE 6939. Thermosense XXX, vol. 6939, Orlando. doi:10.1117/12.776781

  21. Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Ahmed, T., Wang, D.: Enhancement and reconstruction of thermographic NDT data. In: Maldague, X.P., Rozlosnik, A.E. (eds.) Proceedings of SPIE, Thermosense XXIV, vol. 4710. doi:10.1117/12.459603, Orlando (2002)

  22. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures. Compos. Struct. 58(4), 521–528 (2002). doi:10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  23. Senarathna, J., Rege, A., Li, N., Thakor, N.V.: Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev. Biomed. Eng. 6, 99–110 (2013). doi:10.1109/RBME.2013.2243140

    Article  Google Scholar 

  24. Kirkpatrick, S.J., Duncan, D.D., Wanh, R.K., Hinds, M.T.: Quantitative temporal speckle contrast imaging for tissue mechanics. J. Opt. Soc. Am. A 24(12), 3728–3734 (2007)

    Article  Google Scholar 

  25. Kirkpatrick, S.J., Duncan, D.D., Wells-Gray, E.M.: Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett. 33(24), 2886–2888 (2008)

    Article  Google Scholar 

  26. Boas, D.A., Dunn, A.K.: Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15(1), 011109 (2010). doi:10.1117/1.3285504

    Article  Google Scholar 

  27. Nothdurft, R., Yao, G.: Imaging obscured subsurface inhomogeneity using laser speckle. Opt. Express 13(25), 10034–10039 (2005)

    Article  Google Scholar 

  28. Sfarra, S., Theodorakeas, P., Ibarra-Castanedo, C., Avdelidis, N.P., Paoletti, A., Paoletti, D., Hrissagis, K., Bendada, A., Koui M., Maldague, X.: Importance of integrated results of different non-destructive techniques to evaluate defects in panel paintings: the contribution of infrared, optical and ultrasonic techniques. In: Proceedings of the SPIE 8084, O3A: Optics for Arts, Architecture and Archeology III, Munich, Germany (2011)

  29. Cielo, P., Rousset, G., Bertrand, L.: Nondestructive interferometric detection of unbounded layers. Opt. Laser Eng. 5, 231–248 (1984)

    Article  Google Scholar 

  30. Rousset, G., Bertrand, L., Cielo, P.: A pulsed thermoelastic analysis of photothermal surface displacements in layered materials. J. Appl. Phys. 57, 4396–4405 (1985)

    Article  Google Scholar 

  31. Theodorakeas, P., Ibarra-Castanedo, C., Sfarra, S., Avdelidis, N.P., Koui, M., Maldague, X., Paoletti, D., Ambrosini, D.: NDT inspection of plastered mosaics by means of transient thermography and holographic interferometry. NDT&E Int. 47, 150–156 (2012)

    Article  Google Scholar 

  32. Ibarra-Castanedo, C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Diagnostics of panel paintings using holographic interferometry and pulsed thermography. QIRT J. 7(1), 85–114 (2010)

    Article  Google Scholar 

  33. Forest Products Laboratory: Wood Handbook—Wood as an Engineering Material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (2010)

  34. Beall, F.C.: Specific heat of wood. Research note FPL-0184. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (1968)

  35. Perilli, S., Regi, M., Sfarra, S., Nardi, I.: Comparative analysis of heat transfer for an advanced composite material used as insulation in the building field by means of Comsol Multiphysics and Matlabcomputer programs. Rev. Rom. Mater. 46(2), 185–195 (2016)

    Google Scholar 

  36. Onofrei, E., Codau, T.C., Petrusic, S., Bedek, G., Dupont, D., Soulat, D.: Analysis of moisture evaporation from underwear designed for fire-fighters. AUTEX Res. J. 14, 1–13 (2014)

    Article  Google Scholar 

  37. Lunkenheimer, P., Wehn, R., Schneider, U., Loidl, A.: Glassy aging dynamics. Phys. Rev. Lett. 95, 055702 (2005)

    Article  Google Scholar 

  38. MacIsaac, D., Kanner, G., Anderson, G.: Basic physics of the incandescent lamp (lightbulb). Phys. Teach. 37, 520–525 (1999)

    Article  Google Scholar 

  39. Petersen, K., Klocke, J.: Understanding he deterioration of paintings by microorganisms and insects. In: Stoner, J.H., Rushfield, B. (eds.) The Conservation of Easel Paintings. Routledge (Taylor & Francis Group), New York (2012)

    Google Scholar 

  40. Schellmann Nanke, C.: Animal glues: a review of their key properties relevant to conservation. Rev. Conserv. 8, 55–66 (2007)

    Google Scholar 

  41. Sfarra, S., Ibarra-Castanedo, C., Lambiase, F., Paoletti, D., Di Ilio, A., Maldague, X.: From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared. Meas. Sci. Technol. 23, 115601 (2012). doi:10.1088/0957-0233/23/11/115601

    Article  Google Scholar 

  42. Sfarra, S., Perilli, S., Paoletti, D., Ambrosini, D.: Ceramics and defects: infrared thermography and numerical simulations a wide-ranging view for quantitative analysis. J. Therm. Anal. Calorim. 123, 43–62 (2015). doi:10.1007/s10973-015-4974-5

    Article  Google Scholar 

  43. Theodorakeas, P., Avdelidis, N.P., Cheilakou, E., Koui, M.: Quantitative analysis of plastered mosaics by means of active infrared thermography. Constr. Build. Mater. 73, 417–425 (2014). doi:10.1016/j.conbuildmat.2014.09.089

    Article  Google Scholar 

  44. Sfarra, S., Ibarra-Castanedo, C., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Discovering the defects in paintings using non-destructive testing (NDT) techniques and passing through measurements of deformation. J. Nondestruct. Eval. 33, 358–383 (2014). doi:10.1007/s10921-013-0223-7

    Article  Google Scholar 

  45. Avdelidis, N.P., Moropoulou, A.: Emissivity considerations in building thermography. Energy Build. 35, 663–667 (2003)

    Article  Google Scholar 

  46. López, G., Basterra, L.A., Acuňa, L., Casado, M.: Determination of the emissivity of wood for inspection by infrared thermography. J. Nondestruct. Eval. 32, 172–176 (2013). doi:10.1007/s10921-013-0170-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sfarra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfarra, S., Theodorakeas, P., Černecký, J. et al. Inspecting Marquetries at Different Wavelengths: The Preliminary Numerical Approach as Aid for a Wide-Range of Non-destructive Tests. J Nondestruct Eval 36, 6 (2017). https://doi.org/10.1007/s10921-016-0384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-016-0384-2

Keywords

Navigation